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Abstract

The p-adic fields Qp are integral in number theory and arithmetic geometry, and serve as a key
example of a non-Archimedean field. Unfortunately, a naïve attempt to construct a theory of
analytic geometry over Qp, paralleling the one over the complex numbers C, fails to be useful.
For example, a compact analytic manifold over Qp decomposes as a disjoint union of open balls.
Over C, algebraic objects such as curves given by the zero sets of polynomials may be studied as
analytic objects by considering their analytifications. Such analytifications reflect the geometry
of the algebraic object, but an analog over Qp using only the naïve approach lacks this property
due to the highly disconnected nature of compact manifolds.

Berkovich spaces provide an alternative approach to non-Archimedean analytic geometry,
giving a topologically well-behaved class of spaces. They allow for analytifications of varieties
over non-Archimedean fields, which preserve several important properties of the geometry of the
variety. This project aims to serve as an introduction to the theory of these spaces and how their
geometric properties may be determined, illustrating the theory with several examples, including
the case of elliptic curves. Of particular importance is the notion of a skeleton of a Berkovich
space, which is a subspace controlling the homotopy type of the space. We study how skeleta
may be found for both curves and higher dimensional spaces. In particular, we give a proof
of a result showing how a Berkovich space may be recovered as a topological inverse limit of
its skeleta. To the best of our knowledge, all proofs of this result in the literature utilise more
advanced techniques in algebraic geometry than those in this report; the proof given here can be
considered more direct and explicit.
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Chapter 1

Introduction

1.1 Motivation
A field k is said to be non-Archimedean with respect to an absolute value | · | : k → R if the
ultrametric triangle inequality is satisfied:

|f + g| ≤ max{|f |, |g|} ∀f, g ∈ k.

In number theory, a prominent example of such fields are the p-adics Qp equipped with the p-adic
absolute value, while in geometry, one is often interested in working over the field of Laurent
series F ((t)) over a field F , equipped with the t-adic absolute value.

Over C, an important class of geometric objects comes in the form of Riemann surfaces,
which are compact analytic manifolds of complex dimension 1. More generally, a nonsingular
variety over C admits an analytification, which is a complex analytic space; Riemann surfaces
then correspond to analytifications of curves. Furthermore, the analytification of a variety may
be studied using transcendental methods (see [17, Appendix B]). A suitable GAGA principle then
indicates that the geometry of the analytification reflects the geometry of the original variety.

In order to develop a similar theory over non-Archimedean fields, it is natural to consider
compact analytic manifolds, but here, a theorem of Serre shows that such spaces are poorly
behaved when the base field is non-Archimedean and locally compact - as is the case for the
fields Qp and Fq((t)).

Theorem 1.1.1. [25, Appendix 2] Let X be a non-empty, compact analytic manifold over a
locally compact and non-Archimedean field. Then X decomposes as a disjoint union of a finite
number of balls. If there are two such decompositions into n and m balls respectively, then
n ≡ m mod q, where q is the size of the residue field.

In particular, this completely determines the structure of any such manifold and motivates
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1.2. Report Structure

the need for an improved notion of non-Archimedean analytic spaces.

An important milestone in the development of a well-behaved non-Archimedean analytic
theory came through Tate’s rigid analytic spaces in the 1960s. These spaces, developed using
rings of convergent power series as opposed to the polynomial rings used in algebraic geometry,
were much better behaved, admitting, for example, a suitable GAGA principle. An important
variation, and the one which will be principally studied here, was in the form of Berkovich’s
k-analytic spaces, developed in the late 1980s. An advantage offered by Berkovich spaces was
that it became possible to work directly with the topology of the space itself, as opposed to
the ‘Grothendieck topology’ used in rigid analytic geometry, a feat made possible by effectively
adding additional points to rigid spaces. Presently, Berkovich spaces find a plethora of uses,
including non-Archimedean analogues for potential theory [5] and mirror symmetry [19, 23].

1.2 Report Structure
In this report, we explore the theory of Berkovich spaces, focusing on techniques to visualise
and determine the geometry of such spaces. We assume some knowledge of algebraic geometry,
category theory and some elementary results in non-Archimedean analysis. In particular, it is
crucial to use the theory of schemes as opposed to the classical theory of varieties.

In the first core chapter, we review the construction of Berkovich spaces. Although there are
some parallels here with the construction of schemes, some more care is needed in comparison
with the approach taken in algebraic geometry, since we must additionally capture the analytic
aspects of the rings that we are working with. The primary example considered to illustrate the
theory is that of the analytic affine line A1,an

k , for which we are able to derive an explicit picture.
We also describe the construction of the analytification functor, assigning to a k-variety X the
Berkovich space Xan.

We then focus our attention towards k-analytic curves. We give an overview of formal schemes
and formal models. In general, a model for an analytic space can be considered to be a space,
such as a scheme or a formal scheme, which captures the geometry of the analytic space. Then,
we move on to the notion of a skeleton, which is a fundamental concept in the theory of Berkovich
spaces. If X is a k-analytic space, then a skeleton Σ is a closed subset of X admitting a strong
deformation retraction X → Σ. In particular, the homotopy type of X is controlled by the
skeleton. We see how skeleta of curves are closely linked to the classical theory of semistable
formal models, using the analytic projective line to illustrate the correspondence.

Equipped with the ideas and imagery of curves, we then generalise the notion of a skeleton
to higher dimensional analytic spaces. For each proper variety X over k, we consider the class of
schemes which model the analytic space Xan, known as snc models. We see how an snc model
X gives rise to a skeleton Sk(X ) ⊂ Xan, and furthermore, provide a proof of theorem 4.3.7,
which states that there is a homeomorphism

Xan ∼= lim←− Sk(X )
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1.2. Report Structure

as X ranges over the snc models of Xan. Informally, the topology of Xan is determined by its
snc models.

In the final chapter, we consider the case of elliptic curves, explaining how non-Archimedean
uniformization theory may be used to construct the analytic space associated to an elliptic curve
with multiplicative reduction. We apply the results from previous chapters to compute skeleta
for this space.

1.2.1 Contributions
The contributions of the report are summarised as follows.

• Various aspects of the theory originally spread across various textbooks and papers are
organised into one report. In particular, there is no standard textbook for non-Archimedean
geometry, so information has been consolidated from a variety of sources.

• Examples in addition to what is presented in the sources have been computed in order to
better illustrate the theory.

• Efforts have been made to clarify details and arguments which were omitted in the original
sources or left as exercises to the reader.

• A proof is given of the result labelled in the following chapters as theorem 4.3.7. To the best
of our knowledge, proofs in the literature of this result require more advanced techniques
in algebraic geometry (see [11]). We present two proofs for this result which essentially
depend only on standard results on blow-ups of schemes, hence providing a more direct
and explicit argument.

– The first proof works for arbitrary dimensions, but requires resolution of singularities,
which is a powerful result in birational geometry.

– The second proof does not depend on resolution of singularities, but works only in the
case of curves.

Notation and Conventions Throughout the report, k will denote a complete non-Archimedean
field with a non-trivial absolute value | · |. Its valuation ring will be denoted by R and the residue
field by k̃. The valuation group of any valued field (K, | · |K) is denoted by |K×| = {|f |K | f ∈
K×} ⊂ R.
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Chapter 2

k-Analytic Spaces

To develop a satisfactory geometric theory of analytic spaces, we start by developing the corre-
sponding algebraic theory before using this to define the basic building blocks of analytic spaces.
The material in this chapter primarily follows [6] and [28].

2.1 k-Affinoid Spectra
Let A be a commutative ring with unity. A seminorm (resp. non-Archimedean seminorm) on A
is a function | · | : A→ R≥0 such that for all f, g ∈ k the following hold:

1. |0| = 0 and |1| = 1;
2. |f · g| ≤ |f | · |g|;
3. |f − g| ≤ |f |+ |g| (resp. |f − g| ≤ max{|f |, |g|}).

If we have that |f | = 0 if and only if f = 0, then the seminorm is called a norm. Note that
we assume any norm to be submultiplicative. If for all f, g ∈ k, |f · g| = |f | · |g|, then the norm
is said to be multiplicative; a multiplicative norm is an absolute value. Then, any norm on A

induces a topology and hence we may take the completion of A with respect to the given norm.
For a normed ring (A, | · |), we define:

A◦ := {a ∈ A | |a| ≤ 1}

A◦◦ := {a ∈ A | |a| < 1}

The residue ring Ã is then given by A◦/A◦◦. A complete normed ring is called a Banach ring.
Given a Banach ring A with norm || · ||, we say that a seminorm | · | on A is bounded if for all
f ∈ A , |f | ≤ C||f || for some constant C. If the seminorm is multiplicative, then we may take
C = 1. A morphism of Banach rings φ : (A , || · ||A ) → (B, || · ||B) is a homomorphism of the
rings which is bounded in the sense that ||φ(a)||B ≤ C · ||a||A , for any a ∈ A and some constant
C. For our purposes, it suffices to consider only Banach k-algebras.
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2.1. k-Affinoid Spectra

For any r = (r1, . . . , rn) ∈ Rn≥0, a = (a1, . . . , an) ∈ kn, we define the Banach k-algebra:

k{r−1(T − a)} = k{r−11 (T1 − a1), . . . , r−1n (Tn − an)}

:=

f =
∑
|α|≥0

cα(T − a)α | cα ∈ k and |cα|r|α| → 0 as |α| → ∞


The norm on this algebra is given by ||f || := maxα |cα|r|α|. Although not immediate, the

following lemma describes some well-known properties of the norm.

Lemma 2.1.1. [9, §6.1.5] The norm || · || on k{r−1(T − a)} is multiplicative, and hence an
absolute value. Furthermore, when k is algebraically closed, for any f ∈ k{r−1(T − a)} we have
that:

max
α
{|cα|r|α|} = sup

z∈B(a,r)

|f(z)|

where B(a, r) ⊂ kn denotes the closed ball of radius r centered at a.

The algebras described are the analytic counterpart to polynomial rings in n variables over
k - they additionally capture the notion of convergence of a power series on a polydisk centered
at a with radius r. This analogy extends to define a corresponding notion of finitely generated
algebras.

For a closed ideal I of a Banach ring A with norm || · ||, the quotient A /I has an induced
norm, called the residue norm, given by |f + I| = infh∈I ||f + h||. Two norms are equivalent if
they are both bounded by each other. We say a map of Banach rings φ : A → B is admissible
if the residue norm on A / kerφ is equivalent to the norm on B restricted to imφ.

Definition 2.1.2. [6, §2.1] A k-affinoid algebra A is a Banach k-algebra such that there is an
admissible surjective homomorphism of Banach algebras k{r−1T} → A , for some r ∈ Rn>0 and
some n ≥ 0.

Hence, the above definition means that we may identify, as Banach k-algebras, a k-affinoid
algebra with a quotient of k{r−1T}. A k-affinoid algebra A is Noetherian and all ideals are
closed [6, Prop. 2.1.3], so it makes sense to talk about quotients A /I where I is a necessarily
finitely generated ideal of A .

Next, we introduce an analogue of the Spec construction in the form of the Berkovich spectrum
of a Banach ring.

Definition 2.1.3. [6, §1.2] Let (A , || · ||) be a Banach ring. The Berkovich spectrum M (A ) is
the set of all multiplicative seminorms on A , bounded with respect to || · ||. The topology is the
weakest such that for all f ∈ A , the functionM (A )→ R≥0 given by | · |x 7→ |f |x is continuous.

We will identify a point x ∈ M (A ) with a seminorm, denoted | · |x. For a non-zero Banach
ring A , the spectrumM (A ) is non-empty, compact and Hausdorff [6, Theorem 1.2.1], and when
the norm on A is non-Archimedean, the points of M (A ) are non-Archimedean seminorms.
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2.1. k-Affinoid Spectra

Example 2.1.4. For any field K endowed with a non-Archimedean absolute value || · ||, the
spectrum M (K) consists of a single point. Indeed, taking any element | · |x ∈ M (K) and f ∈
K×, we see that |f |x ≤ ||f ||. But additionally, |f−1|x ≤ ||f−1||, which implies by multiplicativity
that ||f || = |f |x. Hence the only point of M (K) is the absolute value on K.

Example 2.1.5. For all n > 0, a ∈ kn and r ∈ Rn>0, the Berkovich closed disk E(a, r) is defined
as

E(a, r) =M
(
k{r−1(T − a)}

)
.

Since the norm || · || on k{r−1(T − a)} is multiplicative, it gives a point of E(a, r) which -
by definition of the spectrum - is maximal in the sense that for any other point | · |x and
f ∈ k{r−1(T − a)}, we have that |f |x ≤ ||f ||.

The closed disk admits the following description.

Proposition 2.1.6. [6, §1.4.4] For all n > 0, a = (a1, . . . , an) ∈ kn and r = (r1, . . . , rn) ∈ Rn>0,
the closed disk E(a, r) is identified with the set of multiplicative seminorms on k[T1, . . . , Tn]

extending the absolute value on k such that |Ti − ai|x ≤ ri for all 1 ≤ i ≤ n.

Proof. We may assume by a suitable change of coordinates that a = 0 ∈ kn. Fix a point
x ∈ E(0, r). Then any such point defines a multiplicative seminorm on k[T1, . . . , Tn] by restricting
along the inclusion k[T1, . . . , Tn] ⊂ k{r−1T}. The fact that | · |x is bounded by the norm
on k{r−1T} immediately implies that the seminorm extends the absolute value on k and that
|Ti|x ≤ ri for all 1 ≤ i ≤ n.

Conversely, fix a seminorm | · |x as in the statement of the theorem, and assume |T |x ≤ r.
For an element

f =

∞∑
|α|=0

cαT
α ∈ k{r−1T}

we define the sequence (fn)n∈N, where for any n ∈ N,

fn :=

n∑
|α|=0

cαT
α ∈ k[T1, . . . , Tn]

and subsequently define a map on k{r−1T} sending f 7→ limn→∞ |fn|x.

To see that this limit exists, we show that the sequence (an)n∈N given by an = |fn|x is Cauchy.
Fix N ≥ 0 and n,m ≥ N with n ≥ m. Then,

|an − am| ≤ |fn − fm|x ≤ max
m≤|α|≤n

{|cα|r|α|}

and the latter approaches 0 as N tends to infinity.

It is readily verified that this is a multiplicative seminorm on k{r−1T} using properties of
limits, so it remains to show that it is bounded by the norm || · || on k{r−1T}. But we see that
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2.1. k-Affinoid Spectra

for any n ≥ 0:
|fn|x ≤ max

0≤|α|≤n
{|cα|r|α|} ≤ max

|α|≥0
{|cα|r|α|} = ||f ||.

Later we will see that this description has a strong connection with the analytic affine line.
We will delay the visualisation of the one-dimensional closed disk until we have encountered the
full affine line, but in the meantime, the following lemma provides an initial insight into the
topology of the space.

Lemma 2.1.7. Assume k is algebraically closed and denote the point associated to the norm
on k{T} by || · ||, where the elements of k{T} are power series in one variable. Then the subset
E(0, 1)\{|| · ||} is a disjoint union of open sets, the number of which is in bijection with k̃.

Proof. Fix representatives b ∈ k for each element b̃ ∈ k̃, and consider the sets:

Xb := {| · |x | |T − b|x < 1}

It follows directly from the definition of the topology on a Berkovich spectrum that these sets
are open.

Using the description given in proposition 2.1.6, we see that as k is algebraically closed
any point | · |x ∈ E(0, 1) is determined by the values |T − a|x as a ranges over elements of
k. Furthermore, when |a| > 1, we have that |T − a|x = |a| due to the ultrametric triangle
inequality. Since ||T − a|| = 1 when |a| ≤ 1, it follows that for any other point | · |x 6= || · ||,
there exists some a with |a| ≤ 1 such that |T − a|x < 1. If a′ ∈ k is such that |a− a′| < 1, then
|T − a′|x ≤ max{|T − a|x, |a− a′|} < 1. So it follows that any point distinct from || · || lies in Xb

for some b. Finally, we find that if |a− a′| = 1 for some a, a′ with |a|, |a′| < 1, and |T − a|x < 1,
then |T − a′|x = max{|T − a|x, |a− a′|} = 1, so the Xb are disjoint.

In the above lemma, the sets Xb can be thought of as open disks D(b, 1). Recall that in k,
the unit closed disk already decomposes into a disjoint union of k̃ open unit disks. Later we
will see that the unit disk is in fact path connected; consequently, we see that we have somehow
improved upon the topology of k by adding in the point || · ||.

Now let A be a Banach ring. For any point x ∈ M (A ) the following construction is an
invariant known as the completed residue field at x [6, §1.2.2]. Firstly, note that the set of points

kerx := {a ∈ A | |a|x = 0}

is a closed prime ideal of A . Hence, A / ker | · |x is an integral domain and we may take the
quotient field Frac(A / kerx). The seminorm | · |x defines an absolute value on A / ker | · |x simply
by setting |f |x := |f |x for any representative f of the equivalence class f , and this absolute value
extends to one on the quotient field.
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2.1. k-Affinoid Spectra

Definition 2.1.8. The completed residue field H (x) at x ∈ M (A ) is the completion of the
quotient field Frac(A / kerx) with respect to the induced absolute value.

In particular, when A is k-affinoid, we find that H (x) is a field extension of k.

We now explain remark 1.2.2ii in [6] giving an alternative viewpoint on M (A ), which will
be occasionally useful in the sequel. Firstly, a character is a non-zero bounded homomorphism
A → K for a valued field K. Two characters to fields K1 and K2 are said to be equivalent if
there is a valued field K with embeddings i1 : K → K1, i2 : K → K2 such that the characters
factor through a character A → K.

By construction of H (x), we see that any point x ∈M (A ) defines a character A →H (x)

by mapping f 7→ f(x), where f(x) denotes the image of f in H (x). Conversely, let χ : A → K

be any character. Then we have an induced bounded multiplicative seminorm | · |χ on A given
by f 7→ |χ(f)|K , where | · |K is the absolute value on K. The given character is in fact equivalent
to the character A → H (x), where x denotes the point corresponding to | · |χ. To see this,
firstly note that there is an induced bounded homomorphism A / kerx→ K since kerx = kerχ.
This descends to an embedding of quotient fields Frac(A / ker | · |χ) → Frac(K) = K and by
construction, there is already an embedding Frac(A / ker | · |χ)→H (x). Hence, the set M (A )

may also be described as the set of equivalence classes of characters A → K.

Any bounded homomorphism of any commutative Banach rings φ : A → B defines a con-
tinuous map of the spectra φ∗ :M (B)→M (A ) by sending a seminorm | · |x to the seminorm
|f |ϕ∗(x) := |φ(f)|x [6, §1.2.2 iii]. However, not all continuous maps of spectra arise in this way.
We aim to have a category of k-affinoid spectra which is equivalent to the opposite category of
k-affinoid algebras, as in the case of affine schemes. Hence, we now make a preliminary definition
of the category of k-affinoid spaces k-Aff as the opposite category to the category of k-affinoid
algebras.

Ultimately, we endeavour to endow the Berkovich spectrum with the structure of a locally
ringed space, so that taking global sections recovers the k-affinoid space, and furthermore so that
we may discuss analytic functions on such spaces. This will also allow us to interpret Berkovich
spectra as k-affinoid spaces. Until that point, we will be careful to distinguish the notions. For a
k-affinoid space X, we will denote by O the corresponding k-affinoid algebra andM (O(X)) will
denote the associated spectrum. We note that a morphism X → Y of k-affinoid spaces induces
a map M (O(X))→M (O(Y )).

The process of building the structure sheaf is unfortunately more complicated here than
in the algebraic case. For an affine scheme SpecA, the structure sheaf is constructed so that
OSpecA(D(f)) = Af but attempting to copy this in the analytic case fails, since a localization
of a k-affinoid algebra A may not admit a k-affinoid structure. Instead, we mirror the universal
property of an open immersion of schemes in the context of k-affinoid spaces.

Definition 2.1.9. [27, §3] Let X be a k-affinoid space with A = O(X) and V ⊂ M (O(X)) a
closed subset. Then V defines a k-affinoid domain in X if there is a k-affinoid space XV with
AV = O(XV ) and a morphism φ : XV → X such that:
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2.1. k-Affinoid Spectra

1. The image of the induced continuous map M (AV )→M (A ) coincides with V .
2. For any morphism ψ : Z → X such that the image of the map M (O(Z)) → M (A )

is contained in V , there is a unique factorisation through φ, so the following diagram
commutes.

XV X

Z

ϕ

ψ

∃!ψ

If V defines an affinoid domain XV → X in X, we denote OX(V ) := O(XV ). The map
M (OX(V )) → M (O(X)) can be shown to be a homeomorphism onto the image V , and the
subset V uniquely determines the morphism XV → X [6, Proposition 2.2.4]. Furthermore, if
y ∈M (OX(V )) is a point mapping to x ∈ V under the map M (OX(V ))→M (O(X)), then it
is a fact that the induced isometric embedding H (x) ↪−→H (y) is an isomorphism H (x) ∼= H (y)

[28, Fact 3.2.3.2].

Using affinoid domains, we may begin to construct the structure sheaf for a k-affinoid spec-
trum X. We first show that the intersection of two affinoid domains is an affinoid domain, akin
to the fact that the intersection of two affine open sets is affine in a separated scheme. An
essential ingredient is the fact that in the category of k-affinoid algebras, the fibered coproduct
of A → AU and A → AV exists and coincides with the completed tensor product AU ⊗̂A AV

[28, §3.1.4.1]. We omit the construction of the completed tensor product, which involves taking
a suitable completion of the regular tensor product; see [28, Definition 2.1.2.3].

Proposition 2.1.10. [6, §2.2.2] Let X be a k-affinoid space, A = O(X) and suppose U, V ⊂
M (A ) define affinoid domains XU → X and XV → X respectively. Then the intersection U ∩V
defines an affinoid domain given by the fiber product XU ×X XV → X.

Proof. Denote AU := OX(U) and AV := OX(V ). Since the category of k-affinoid algebras
admits a fibered coproduct, the category of k-affinoid spaces admits a fiber product:

XU ×X XV XU

XV X

It suffices to show that the image of the induced map M (AU∩V )→M (A ) is precisely U ∩ V ,
since then the universal property of affinoid domains follows from the universal property of the
fiber product.

By considering the maps of spectra obtained from the above diagram, we see that the image
is contained within U ∩ V , so only the reverse inclusion needs to be shown. Fix x ∈ U ∩ V .
Then x is identified with characters AU →H (x) and AV →H (x). This induces a commuting
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2.1. k-Affinoid Spectra

diagram:
A AU

AV H (x)

and so there exists a unique character AU∩V → H (x) by the universal property of the fibered
coproduct, which coincides with A → H (x) when composed with the map A → AU∩V . By
our earlier remarks on viewing points as characters, we deduce that x lies in the image of
M (AU∩V )→M (A ).

If V1, . . . , Vn define affinoid domains in X, then the union V1 ∪ · · · ∪ Vn is said to define a
special subset in X [6, §2.2]. Then, denoting AVi

= OX(Vi) and AVi∩Vj
= OX(Vi ∩ Vj) and

noting that we have restriction maps AVi
→ AVi∩Vj

given by the fibered coproduct, define:

OX(V ) := ker

∏
i

AVi →
∏
i,j

AVi∩Vj


where the map is given by (fi)i∈I 7→ (fi|Vi∩Vj

− fj |Vi∩Vj
)i,j . For any open set U ⊂ M (O(X)),

define:
OX(U) := lim←−

V⊂U
OX(V )

where the limit is taken over all special subsets V ⊂ U . The special subsets can hence be
thought of as a kind of ‘base’ of the topology, although the special subsets are not open in our
case. With this comparison in mind however, the procedure is inline with the formation of the
sheaf on a scheme defined as taking the limit over the sheaf defined on the distinguished opens.
In both cases, it suffices to check that the sheaf conditions are satisfied on the elements of the
‘base’ since limits commute with limits, and it then follows that the resulting construction is a
sheaf. The proof that the sheaf conditions are satisfied on the special subsets, and that OX(V )

is independent of the choice of covering for each special subset V is omitted; see [6, Corollary
2.2.6]. The key result used in the proof is Tate’s acyclity theorem, which we present in the
relevant form.

Theorem 2.1.11. [9, §8.2.2] Let V1, . . . , Vn define affinoid domains in X which form a finite
covering for M (A ), where A = O(X). Let M be a finite Banach A -module and denote
Mi =M ⊗A OX(Vi), Mij =M ⊗A OX(Vi ∩ Vj) and so on. Then, the Čech complex

0→M →
∏
i

Mi →
∏
i,j

Mij → . . .

is exact, and each map is an admissible morphism.

At each point x ∈ M (O(X)), the stalk OX,x of this sheaf is a local ring [6, §2.3], with
maximal ideal

mx = {f ∈ OX,x | |f |x = 0}.

11



2.1. k-Affinoid Spectra

We claim that affinoid neighbourhoods of a point are cofinal in the collection of all neighbour-
hoods. To see this, we consider the following key example [6, §2.2.2]. Let X be a k-affinoid
space, f1, . . . , fn, g1, . . . , gm elements in A = O(X) and p1, . . . , pn, q1, . . . , qm positive real num-
bers. Define the set

X(p−1f, qg−1) := {x ∈ X | |fi|x ≤ pi, |gj |x ≥ qj , 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

Then, V := X(p−1f, qg−1) defines an affinoid domain in X, called a Laurent domain. It corre-
sponds to the k-affinoid algebra

AV := A {p−11 T1, . . . , p
−1
n Tn, q1S1, . . . , qmSm}/(Ti − f1, gjSj − 1)

and the natural morphism A → AV .

If U is an open neighbourhood of a point x, then it can be shown to contain an open neigh-
bourhood of x of the form

{y ∈M (A ) | |fj |x < 1, |gj |x > 1, 1 ≤ i ≤ n, 1 ≤ j ≤ m}

for some f1, . . . , fn, g1, . . . , gm ∈ A . Hence, Laurent domains form a basis of closed neighbour-
hoods of a point. It follows that there is an isomorphism

OX,x ∼= lim−→OX(V )

as V ranges over affinoid neighbourhoods of x. It can additionally be shown that for each point
x ∈ M (A ), κ(x) := OX,x/mx is a dense subset of H (x), hence taking the completion with
respect to the induced absolute value results in precisely H (x), justifying the name ‘completed
residue field’ [7, §2.1].

We now define the category of k-affinoid spectra as follows [28, Definition 3.3.3.1]. The objects
are the locally ringed spaces given by k-affinoid spectra M (A ) with the structure sheaf OX
defined as above on the usual topology ofM (A ), whereX is the k-affinoid space corresponding to
A . The morphisms in this category are morphisms of locally ringed spaces f :M (A )→M (B)

satisfying the following conditions. Denote by X and Y the k-affinoid spaces associated to A

and B respectively. Then, we require that for all V ⊂M (B) and V ′ ⊂ f−1(V ) defining special
subsets in Y and X respectively, the induced morphism f ♯ : OY (V ) → OX(V ′) is bounded. It
can then be shown that any such morphism is uniquely induced by a morphism of k-affinoid
algebras so that the categories of k-affinoid spectra and k-affinoid spaces are equivalent [28,
§3.3.3]. In the sequel, we will identify any k-affinoid space X with the corresponding k-affinoid
spectrumM (O(X)) considered as a locally ringed space. Additionally, we will identify a closed
subset V defining an affinoid domain in a k-affinoid space X with the space M (OX(V )).

12



2.2. k-Analytic Spaces

2.2 k-Analytic Spaces
We now build up a definition of k-analytic spaces following [6, §3.1]. Although this construction
only gives a strict subset of all Berkovich spaces - those where every point has an affinoid
neighbourhood, known as ‘good’ spaces - these spaces will be sufficient for our purposes, as it
will turn out that the constructions we are concerned with result in precisely such a space.

Definition 2.2.1. A k-quasiaffinoid space is a pair (U, φ), where U is a locally ringed space and
φ is an open immersion φ : U → Ũ for some k-affinoid space Ũ .

A morphism f of quasiaffinoid spaces (U, φ) → (U ′, ψ) is a morphism of the locally ringed
spaces U → U ′ such that for each pair of affinoid domains A ⊂ U and B ⊂ U ′ with f(A)

contained in the interior of B, the restriction f |A : A→ B is a map of affinoid spaces.

Definition 2.2.2. A k-analytic space is a locally ringed space X along with a choice of equiva-
lence class of atlases A = {(Ui, φi)}i∈I of quasiaffinoid spaces such that:

1. the set {Ui}i∈I forms an open cover of X;
2. for each i, j ∈ I, the map φi ◦ φ−1j : φj(Ui ∩ Uj) → φi(Ui ∩ Uj) is an isomorphism of

quasiaffinoid spaces.

A morphism of k-analytic spaces f : X → Y is given by a morphism of locally ringed spaces
such that for each chart (Ui, φi) of X and (Vj , ψj) of Y , the map ψj ◦ f ◦ φ−1i is a morphism
of quasiaffinoid spaces. Hence we obtain a category of k-analytic spaces, denoted k-An. Any
k-affinoid space X is a k-analytic space under the trivial atlas {(X, id)}, and the category k-Aff
is a full subcategory of k-An .

We contrast this with the usual definition of a (smooth) manifold over a field K: the role of
the quasiaffinoid charts is that of charts of open subsets of Kn, except that we have replaced Kn

by a k-affinoid space.

If x ∈ X is a point, then we may fix a quasiaffinoid chart (U,U ↪−→ V ) containing x and define
H (x) to be the completed residue field computed by considering x as an element of V . This
is independent of the choice of quasiaffinoid chart, since isomorphisms of quasiaffinoid spaces
necessarily preserve stalks at x of the sheaves on each chart, hence induce isomorphisms of the
completed residue fields computed in each chart.

The earlier notion of an affinoid domain is now generalized, using the same universal property,
hence providing a more global analogue to open subschemes.

Definition 2.2.3. [6, §3.1] A morphism of k-analytic spaces φ : Y → X is an analytic domain
if φ is a homeomorphism onto its image and for any ψ : Z → X with ψ(Z) ⊂ φ(Y ), there is a
unique factorisation of ψ through φ. Furthermore, if Y is isomorphic to a k-affinoid space, then
it is said to be an affinoid domain in X.

We briefly give details of an alternative construction of k-analytic spaces, which gives a
strictly larger class of spaces than those that we constructed above, following [28, §4.1]. If X
is a topological space, a quasi-net T on X is a set of subsets such that any point x ∈ X has a
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neighbourhood of the form ∪i=1.Vi, with x ∈ V1 ∩ · · · ∩ Vn, for some elements Vi ∈ T , 1 ≤ i ≤ n.
A quasi-net T is called a net if for any U, V ∈ T , the set {W ∈ T |W ⊂ U ∩V } is a quasi-net on
U ∩ V . An atlas of k-affinoid domains consists of a net T on X and a functor φ from T to the
category of k-affinoid spaces, where T is considered as a category with inclusions as morphisms,
such that:

• the functor φ takes inclusions to embeddings of affinoid domains;

• if φ(U) =M (AU ), then there is a specified homeomorphism iU : U →M (AU );

• if j : U ↪−→ V is a morphism in T , then we have iV ◦ j = φ(j) ◦ iU .

A k-analytic space is then defined to be a locally Hausdorff space equipped with an atlas of k-
affinoid domains. We will call these spaces generalized k-analytic spaces; the spaces we described
previously are then known as good spaces. Good spaces are precisely the generalized spaces where
every point has an affinoid neighbourhood [28, §4.2.1], in the sense that for each point x ∈ X,
there exists some element V ∈ T of the atlas on X such that V is a neighbourhood of x in X.

In the generalized setting, an analytic domain is any subset Y ⊂ X such that there is a
covering Y = ∪i∈IVi such that each element Vi is an affinoid domain in some element of T ; this
is equivalent to our earlier definition definition 2.2.3 [7, §1.3.1]. We deduce that in a good space,
an analytic domain i : Y → X may be identified with a subset Y ⊂ X such that for every point
y ∈ Y , there exists an affinoid domain W in X contained in Y such that W is a neighbourhood
of y in Y , giving a more useful characterisation of analytic domains. It follows from the universal
property that any such subset determines a unique analytic domain up to unique isomorphism.
In particular, a surjective analytic domain embedding is an isomorphism.

Furthermore, suppose Y is an analytic domain in X, y ∈ Y is a point with quasiaffinoid
neighbourhood U , and W is an affinoid domain in X which is an affinoid neighbourhood of y in
Y . Then V ∩ U is an open of V , so there exists an affinoid domain W in V contained in V ∩ U
such that W is an affinoid neighbourhood of y in Y , since, for example, Laurent domains form
a basis of closed neighbourhoods. Hence, we may assume that W is contained in a quasiaffinoid
chart U . If U ↪−→ V is the open immersion into an affinoid space V , then W is an affinoid domain
in V containing y. It follows that there is an isomorphism H (y) ∼= HY (y), where HY (y) denotes
the completed residue field computed in Y .

It is substantially more difficult to define morphisms of generalized spaces, and in the sequel,
we will work strictly with the good spaces defined previously, unless explicitly specified.

2.2.1 The Affine Line
We use the affine line A1,an

k as our primary example to illustrate the theory. In general, n-
dimensional k-analytic space is defined as follows [6, §1.5]. As a set, it is given by the multiplica-
tive seminorms on k[t1, . . . , tn] extending the norm on k. The topology on An,an

k is the weakest
such that for any f ∈ k[t1, . . . , tn], the map An,an

k → R≥0 sending x 7→ |f |x is continuous.

14
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Additionally, An,an
k is endowed with a sheaf of local rings as follows. Fix an open U . As in

the case of Berkovich spectra, any point x ∈ U has an associated completed residue field H an(x)

given by the completion of the quotient field of k[t1, . . . , tn]/ kerx. Denoting by Kn the fraction
field of k[t1, . . . , tn], we say that f ∈ Kn is defined on U if f = g/h for some g, h ∈ k[t1, . . . , tn]
with h(x) 6= 0 for all x ∈ U . Denote f(x) := g(x)/h(x), where g(x), h(x) are the images of g, h
in H an(x).

An analytic function on U is then a mapping

f : U →
∐
x∈U

H an(x)

such that for each x ∈ U there exists an open neighbourhood x ∈ U ′ ⊂ U where for any
ε > 0 there is a element g ∈ Kn defined on U ′ so that |f(y) − g(y)| < ε for all y ∈ U ′.
Intuitively, this corresponds to the idea that locally at each point the function may be arbitrarily
well approximated by rational functions. The assignment of an open U to the ring of analytic
functions on U gives a sheaf of local rings on An,an

k .

The Berkovich open disk D(a, r) = {x | |Ti − ai|x < ri} is an open set of E(a, r), it can be
shown that there is an open immersion D(0, r) → An,an

k [6, Corollary 2.6.2]. Hence, we use the
open disks centered at 0 as the quasiaffinoid atlas, since:

An,an
k =

⋃
r>0

D(0, r)

where we have identifiedD(0, r) as an open in An,an
k by proposition 2.1.6. Since k{r−11 t1, . . . , r

−1
n tn}

contains k[t1, . . . , tn] as a dense subset, we can show that H an(x) ∼= H (x) for any point
x ∈ An,an

k .

Having defined affine n-space, we now return to the affine line. To begin, we derive Berkovich’s
classification theorem of points on the affine line, using the approach suggested in [28, Exercise
2.3.3.5].

Until the end of the section, we will assume that k is algebraically closed, so that any point
of A1,an

k is determined by its values on polynomials of the form T − a, where a ∈ K. Define the
radius of a point to be the value rx = infa∈k |T −a|x; we say the radius is achieved if there exists
some a ∈ k such that |T − a|x = rx. Then:

1. x is type I if rx = 0 and the radius is achieved;
2. x is type II if rx ∈ |k×| and the radius is achieved;
3. x is type III if rx 6∈ |k×| and the radius is achieved;
4. x is type IV if the radius is not achieved.

Proposition 2.2.4. If x is type I, then for any f ∈ k[T ], |f |x = |f(a)|.

Proof. The point x is of type I if the kernel is non-trivial, hence generated by T − a for some
a ∈ k. It suffices to consider the polynomials T − b, for b ∈ k. Then we see that |T − b|x ≤
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max{|T − a|x, |a− b|x} = |a− b|. Since |T − a|x = 0, this is in fact an equality.

For a type I point, it follows that H (x) is a completion of k[t]/ ker |·|x ∼= k, as k is algebraically
closed. But since k is complete, we find that H (x) = k. If x is not type I, the kernel is trivial
and so H (x) is a completion of k(T ).

Proposition 2.2.5. If x is type II or type III, it is equal to the restriction of the norm on
k{r−1x (T − a)} to k[T ]. Furthermore:

1. if x is type II, then |H (x)×| = |k×| and H̃ (x) ∼= k̃(t);
2. if | · |x is type III, then |H (x)×| is generated by |k×| and rx, and H̃ (x) ∼= k̃.

Proof. In either case, we may assume that a = 0 by a suitable change of coordinates. Then, x
is the maximal point of the disk E(0, rx). To see this, fix a point | · |y ∈ E(0, rx) and b ∈ k×.
Note that if |b| 6= rx, then |T − b|x = max{|T |x, |b|}, while if |b| = rx, then assuming |T − b|x <
max{|T |x, |b|} = rx yields a contradiction. Hence, in either case, |T − b|x = max{rx, |b|}. We
then compute:

|T − b|y ≤ max{|T |y, |b|} ≤ max{rx, |b|} = |T − b|x.

So we conclude that x is the norm on k{r−1x T}, which is multiplicative and hence the maximal
element of E(0, rx).

To show the remaining claims, we adapt the proofs presented in [5, Prop. 2.3], noting that
completions yield an isomorphism of residue fields so in each case it suffices to work with k(T )

instead of H (x). For an element f/g ∈ k(T ), we will denote the coefficient of T i in f and g

by fi and gi respectively. Here, k(T )◦, resp. k(T )◦◦, denotes the elements f ∈ k(T ) such that
|f |x ≤ 1, resp. |f |x < 1.

When rx 6∈ |k×|, we find that the value group is generated by the set {|T − b|x | b ∈ k}. But
for any b ∈ k, |T − b|x = max{|T |x, |b|x} = max{rx, |b|}, where the inequality is strengthened to
an equality since |b| 6= rx. Hence the value group is generated by |k×| and rx.

To see that H̃ (x) ∼= k̃, note that for any f/g ∈ k(T )◦, there are unique indices i0, j0 such that
|f |x = |fi0 |ri0x and |g|x = |gj0 |rj0x . Then if |f/g|x = 1, we must have that i0 = j0 necessarily and
so |fi0/gj0 | = 1. Therefore, f/g ≡ fi0/gj0 mod k(T )◦◦ and we have a well-defined isomorphism
k̃(T ) ∼= H̃ (x) induced by mapping fi0/gj0 to its reduction.

Now assume rx ∈ |k×|, and by rescaling further assume that rx = 1. The expression for the
norm on k{T} informs us immediately that |H (x)×| = |k×|. Next, note that if f/g ∈ k(T )◦,
then maxi |fi|k ≤ maxj |gj |k. Let gn be the coefficient achieving the maximum for g. Then
f/g = g−1n f/g−1n g = p/q and p, q have coefficients in R, so it makes sense to take reductions of
the coefficients and map f/g 7→ p̃/q̃. This gives a surjective ring homomorphism k(T )◦ → k̃(T ),
with kernel precisely k(T )◦◦.
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By lemma 2.1.1, the above result shows that a type II or III point may be written explicitly
as

|f |x = sup
z∈B(a,rx)

|f(z)| = max
i
|ci| · rix

for f =
n∑
i=0

ci(T − a)i ∈ k[T ].

Proposition 2.2.6. If x is type IV, |f |x is given by:

lim
j→∞

sup
z∈B(aj ,rj)

|f(z)|

where B(a1, r1) ⊇ B(a2, r2) ⊇ . . . is a descending sequence of disks with empty intersection. In
this case, |H (x)×| = |k×| and H̃ (x) ∼= k̃.

Proof. There exists a sequence (aj , rj)j∈N where rj ∈ |k×| and |T − aj |x = rj for all j, and
rj → rx as j → ∞. We may assume that (rj)j∈N is strictly monotonically decreasing and
proceed to show that the corresponding disks B(aj , rj) ⊂ k form a descending chain with empty
intersection.

Fix j ∈ N. Then, assuming |T − aj |x 6= |aj − aj+1| tells us that:

|T − aj+1|x = max{|T − aj |x, |aj − aj+1|} ≥ rj > rj+1

This is a contradiction, so in fact, |aj − aj+1| = rj , showing that aj+1 ∈ B(aj , rj) and proving
that there is a descending chain as in the statement of the theorem.

Next, assume that the intersection is non-empty, so that there exists a ∈ ∩j∈NB(aj , rj).
Then, for any j, we have that:

|aj − a| = max{|aj − aj+1|, |aj+1 − a|} = rj

since |aj+1−a| ≤ rj+1 < rj . Then, |T −a|x ≤ max{|T −aj |x, |aj −a|} < rj for all j. This shows
that the radius is achieved, yielding a contradiction.

We now claim that | · |x is the unique point in the intersection ∩j∈NE(aj , rj). Fix a ∈ k; then
by the above, |aj − a| > rj for some j. Fix a seminorm | · |y in the intersection; then

|T − a|y = max {|T − aj |x, |aj − a|} = |aj − a|

But |T − a|x = |aj − a| by the same calculation; hence x = y. We now note that |f |y =

limj→∞ supz∈B(aj ,rj)
|f(z)| is a seminorm in the intersection and must be equal to | · |x.

Suppose that |T − a|x = ρ for some a ∈ k, ρ 6∈ |k×|. For some j, |aj − a| > rj , so then:

ρ = |T − a|x = |aj − a|
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gives a contradiction.

Next, we define an isomorphism k̃(T ) ∼= k̃, adapting the proof in [5, Prop. 2.3]. For any
a ∈ k, our previous calculations showed that |T −a|x = |aj −a| for some j, hence any f ∈ k[T ] is
eventually constant on the descending chain of disks. Denote this constant value by f0, for any
f ∈ k[T ]. Then for any f/g ∈ k(T )◦, we have that |f0 · g−10 | ≤ 1, so map f/g to the reduction of
f0/g0. This gives a surjective homomorphism k(T )◦ → k̃, with kernel precisely k(T )◦◦.

Any descending chain of disks B1 ⊇ B2 ⊇ . . . as in the statement of proposition 2.2.6
defines a seminorm by setting fi := supz∈Bi

|f(z)| and |f |x := limi→∞ fi. Conversely, any two
such sequences A and B define different seminorms x and y respectively if and only if there
exists some n such that An ∩ Bn = ∅. In one direction, suppose that such an n exists. Let
An = B(an, rn) and Bn = B(bn, sn) and consider f(T ) = T − an. Then |f |x ≤ rn but by the
proof of proposition 2.2.6, |f |y = |bn − an| > rn. In the other direction, fix f ∈ k[T ] and let
fi := supz∈Ai

|f(z)| and gj := supz∈Bj
|f(z)|. We find that if there is no such n, then since fi

and gj are decreasing sequences and disks are either disjoint or one contains the other that the
two sequences have the same limit.

Speaking more generally, the unintuitive property that a descending chain of disks can have
empty intersection is known as being spherically incomplete [6, §1.4.4]. This is difficult to
visualise, since Qp and C((t)) are both spherically complete and do not exhibit this behaviour,
but their completed algebraic closures do, hence we will need to take care to give a proper
treatment of these points in our picture of the affine line.

Adapting [3] and [6, Thm. 4.2.1], we now see how the above classification of points allows
us to visualise the affine line. Firstly, we may define a partial order on A1,an

k by setting x ≤ y

if and only if |f |x ≤ |f |y for all f ∈ k[T ]. From the classification of points, we deduce that any
type II or III point may be associated with a closed disk in k, which we extend to type I points
by allowing ‘degenerate’ disks of the form B(a, 0). We will hence denote a type I, II or III point
by ζa,r for some a ∈ k and r ∈ R≥0. Then, the partial ordering is summarised thusly.

1. If x = ζa,r is any type I, II or III point, then x ≤ y if and only if y = ζb,s is a type I, II or
III point and B(a, r) ⊆ B(b, s).

2. If x is any type IV point, then x ≤ y if and only if y = ζb,s is a type II or III point, and
the disk B(b, s) contains some element of any descending chain of disks associated with x.

Any two points x, y have a least upper bound x∨ y with respect to this partial order. Excluding
the trivial case where x ≤ y or y ≤ x, we find that this is straightforward when neither of x = ζa,r

or y = ζb,s are type IV: it is given by the point ζa,|a−b|. Otherwise, suppose x is type IV and
y = ζb,s is not. Let A1 ⊇ A2 ⊇ . . . be a descending chain of disks defining x. For each i, denote
the smallest disk containing Ai = B(ai, ri) and B(b, s) by Di = B(b, |ai − s|). Then for some i,
Ai and B(b, s) are disjoint; we then find that |ai+1 − b| = max{|ai − ai+1|, |ai − b|} = |ai − b|,
so that Di+1 = Di. Note that this argument also shows that x ∨ y is independent of the choice
of defining sequence. If y is also a type IV point defined by a sequence B1 ⊇ B2 ⊇ . . . , where
Bj = B(bj , sj), then we extend this argument. For some i0, j0, Ai0 ∩ Bj0 = ∅, so for all i ≥ i0,
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there exists a smallest disk Di containing Ai and Bj for all j ≥ j0. We see that Di has radius
|ai − bj0 |. We want to show that Di0 = Di0+1; they both contain ai0+1 so it suffices to show
their radii are the same:

|ai0+1 − bj0 | = max{|ai0 − ai0+1|, |ai0 − bj0 |} = |ai0 − bj0 |

Note that when neither x ≤ y nor y ≤ x, x∨ y is a type II point. In any case, there are then
paths:

[x, x ∨ y] := {z | x ≤ z ≤ x ∨ y}

[y, x ∨ y] := {z | y ≤ z ≤ x ∨ y}

lx,y = [x, x ∨ y] ∪ [y, x ∨ y]

We remark that the path between two non type IV points consists of enlarging a disk before
shrinking it again, essentially allowing us to overcome the totally disconnected nature of the field
k. The following propositions essentially show that the affine line has the structure of a tree.

Proposition 2.2.7. [6, §4.2] Let x be a type I or type IV point. Then, A1,an
k \{x} is connected.

Proof. This follows from the fact that for any points y, z ∈ A1,an
k \{x}, each point in ly,z\{y, z}

is of type II or type III.

Proposition 2.2.8. [6, Theorem 4.2.1] For any two points x, y ∈ A1,an
k with x 6= y, the set lx,y

is the unique path between x and y.

Proof. When x ≤ y, we have that lx,y = [x, y]. Then let y = ζa,r and fix some z ∈ lx,y such that
z 6= x, y. We may assume that z = ζa,r′ for some r′ < r and by translating further that a = 0.
If r′ ∈ |k×|, then we may also rescale so that r′ = 1. In this case, we note that z is the maximal
point of the disk E(0, 1), and A1,an

k = E(0, 1) t {x | |T |x > 1}. It follows from this and the fact
that E(0, 1)− {z} is disconnected by lemma 2.1.7 that A1,an

k − {z} is disconnected, and x and y
lie in disjoint connected components. On the other hand, if r′ 6∈ |k×|, then the continuous map
x 7→ |T |x has image [0, r′) t (r′,∞) on A1,an

k − {z}; in either case, removing z disconnects A1,an
k

so that [x, y] is the unique path from x to y.

Otherwise, suppose x 6≤ y and y 6≤ x. Then we claim that any path from x to y must visit
x ∨ y and by the previous case it then follows that lx,y is unique. Once again, x ∨ y is some
type II point ζa,r; we may once more assume it is ζ0,1, in which case removing x ∨ y from A1,an

k

decomposes A1,an
k into disjoint opens. It then suffices to show that x, y lie in separate connected

components of A1,an
k −{ζ0,1}. From the construction of x∨ y, we see that we must have |T |x ≤ 1

and |T |y ≤ 1; suppose that for some a ∈ R we have |T−a|x < 1 and |T−a|y < 1 so that they lie in
the same connected component of E(0, 1)−{ζ0,1}. Then fix some 1 > r > max{|T−a|x, |T−a|y}
and consider the point ζa,r. By calculation, we find that x ≤ ζa,r and y ≤ ζa,r, contradicting the
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2.2. k-Analytic Spaces

Figure 2.1: Visualisation of A1,an
k

fact that x ∨ y = ζ0,1. It follows that x and y lie in disjoint open disks D(a, 1) and D(b, 1) for
some a, b ∈ R with |a− b| = 1.

From our description of the partial order, it follows that type I and IV points are leaves
and that branching occurs only at type II points. In fact, at each type II point, the number of
branches is in bijection with closed points of P1

k̃
; this is immediate by reducing to the situation

where the type II point is ζ0,1, and then using lemma 2.1.7, noting that the points which are not
contained in the unit disk are those lying on the branch corresponding to ∞.

These results are visualised in fig. 2.1, where type I points are indicated with a closed circle
and identified with a point of k, type II points are identified with the corresponding closed disk in
k and type IV points are indicated by an open circle. The type III points can be imagined to be
interpolating between the type II points, similarly to how the irrationals interpolate between the
rationals in the real number line. The affine line is impossible to accurately draw - for example,
there are infinitely many type II points with infinitely many branches, and infinitely many type
II points along each of those branches, and so on.

Following the presentation in [4], we now define some analytic domains in A1,an
k by using the

fact that there is a continuous map σ : R≥0 → A1,an
k mapping r 7→ ζ0,r, which is a homeomor-

phism onto its image. We will refer to this image as the embedded real line. Then, σ is a section
of the map evT (x) = |T |x, and we find that these maps make the embedded real line into a strong
deformation retract of A1,an

k . Indeed, for any point x ∈ A1,an
k , there is a point α := σ ◦ evT (x)

lying on the embedded real line. By our earlier exposition, there is then a path γ from x to α
parameterised by the unit interval. Hence, the map F (x, t) = γ(t) is a homotopy satisfying the
conditions of a strong deformation retract. These ideas will lead to the notion of the skeleton,
which will later become central to our study of k-analytic spaces.

We find that for any I ⊂ R≥0, ev−1T (I) consists of the points which retract onto the points
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2.2. k-Analytic Spaces

σ(I). Then proposition 2.1.6 indicates that the closed (respectively, open) disk of radius r ∈ |k×|
can be visualised as ev−1T (Ir) where Ir = [0, r] (respectively, Ir = [0, r)). Similarly, [4, §2.1] we
define the standard closed annulus S(a, b) of inner radius |a| and outer radius |b|, for 0 < |a| ≤ |b|
and a, b ∈ |k×| as the subset ev−1T ([a, b]), and when a 6= b, the standard open annulus as
ev−1T ((a, b)). The closed annulus is affinoid, as it is identified with the spectrum of the following
k-affinoid algebra:

k{|a| · T−1, |b|−1 · T} =

{ ∞∑
i=−∞

aiT
i | |ai| · |a|i → 0 as i→∞, |ai| · |b|i → 0 as i→ −∞

}
.

The norm on this algebra is given by∣∣∣∣∣
∞∑

n=−∞
anT

n

∣∣∣∣∣ = max{|an| · |a|n, |an| · |b|n}.

Figure 2.2: Closed (left) and open (right) Berkovich disks

2.2.2 Gluing k-Analytic Spaces
As is the case for topological and algebraic spaces, we may glue k-analytic spaces under appro-
priate conditions. A family of k-analytic spaces {Xi}i∈I gives gluing data if for each pair i, j ∈ I
there are analytic domains Xij ⊂ Xi, Xji ⊂ Xj with an isomorphism µij : Xij → Xji satisfying
the conditions:

1. Xii = Xi and µii = id;
2. µij(Xij ∩Xik) = Xji ∩Xjk;
3. µik = µjk ◦ µik.

Theorem 2.2.9. [7, Prop. 1.3.3] Let {Xi}i∈I be k-analytic gluing data. Suppose that one of
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2.2. k-Analytic Spaces

the two following conditions holds.

1. Each Xij ⊂ Xi is open.
2. Each Xij ⊂ Xi is closed, and for each i ∈ I, Xij 6= ∅ for only finitely many j ∈ I.

In each case, there exists a k-analytic space X such that:

1. For each i ∈ I there exists a morphism φi : Xi → X making Xi into an analytic domain in
X.

2. The images φi(Xi) cover X.
3. φi(Xij) = φi(Xi) ∩ φj(Xj).
4. φi(Xij) = (φj ◦ µij)(Xij)

The proof of this is omitted and may be found in loc. cit. Instead, we consider the analytic
projective line to exemplify both types of gluing [28, Exercise 4.1.4.2]. Using the first kind
of gluing, we may form P1,an

k using affine opens. Let X1 = X2 = A1,an
k and X12 = X21 =

{x ∈ A1,an
k | |T |x 6= 0}. An isomorphism of analytic domains is then induced by the map T 7→

T−1. Concretely, it maps a seminorm | · |x to the seminorm | · |1/x, where:

|anTn + · · · a0|1/x := |T |−nx · |an + · · ·+ a0T
n|x

Using the second kind of gluing, P1,an
k may instead be constructed by gluing the unit disks

X1 = X2 = M (k{T}) along the closed analytic domains X12 = X21 = M
(
k{T, T−1}

)
=

{x | |T |x = 1}. Similarly to the previous case, the isomorphism is induced by the homomorphism
k{T, T−1} → k{T, T−1} mapping T 7→ T−1. This construction mirrors that of forming the
Riemann sphere by gluing two closed disks along their boundaries. We will delay the proof
that these two constructions are isomorphic until we have covered the notion of formal models;
instead, we provide some pictorial intuition in fig. 2.3. The left image visualises the gluing of the
two affine lines while the right image shows the gluing of the unit disks; the analytic domains
which are identified by the gluing are indicated with dashed lines.

The gluing procedure we have described may not, in general, result in a good k-analytic
space. For example, gluing two copies of the unit diskM (k{T}) along the isomorphism given by
M
(
k{T, T−1}

) ∼=M (
k{T, T−1}

)
given by the identity map. In this case, we obtain the closed

unit disk with a ‘doubled open unit disk.’ The point corresponding to ζ0,1 does not admit an
affinoid neighbourhood in this space.

2.2.3 The Analytification Functor
Similarly to the analytification of a complex variety, we can form the analytification of a variety
over the non-Archimedean field k. The process is described following the presentation in [6, §3.4].
The aim of the procedure is to assign to any scheme locally of finite type X a k-analytic space
Xan and a map ι : Xan → X of locally ringed spaces with the following universal property: if Z
is any k-analytic space and φ : Z → X is a map of locally ringed spaces, then there is a unique
factorization φ̃ : Z → Xan through ι, where φ̃ is a map of k-analytic spaces.
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2.2. k-Analytic Spaces

Figure 2.3: Two possible methods of constructing P1,an
k

For the scheme Spec k[T1, . . . , Tn], the analytification is the space An,an
k described previously.

The map ι : An,an
k → Ank is given by mapping a seminorm to the point corresponding to the prime

ideal given by its kernel. Now assume we have obtained the analytification of X and Y ⊂ X

is an open subscheme. Then we set Y an = ι−1(Y ) ⊂ Xan. If Y ⊂ X is a closed subscheme
defined by a coherent OX ideal J, then Y an is the closed subspace cut out by JOXan , which is
a coherent OXan ideal. Finally, for any scheme X locally of finite type covered by open affine
subschemes {Xi}i∈I , we may glue together the analytifications Xi since by the universal property,
the gluing data of the schemes induces gluing data for the analytifications. The canonical map
of locally ringed spaces ι : Xan → X has the property that the induced homomorphism of stalks
ιx : OX,π(x) → OXan,x is local and flat [6, Theorem 3.4.1]. The proof that the constructions
satisfy the desired universal property is omitted.

To exemplify the analytification functor, we now work out some explicit examples. Firstly, we
note that the above construction applied to P1

k yields the space P1,an
k constructed as the gluing

of two analytic affine lines, justifying the notation.

Next, let X be n-dimensional affine space and let Y be the closed subscheme cut out by the
ideal generated by some function f ∈ k[T1, . . . , Tn]. Denote the corresponding OX -ideal by J

and the OXan -ideal corresponding to Y an by Jan. The space Y an is identified, by construction,
with the set of points

{x ∈ An,an
k | ∀g ∈ Jan

x , g(x) = 0}

where g(x) denotes the image of g in the residue field κ(x) := OAn,an,x/mx. Hence, it may be
described as the points x where Jan

x ⊂ mx. Denoting by fx := πx(fπ(x)) the image of the germ
of f at π(x) under πx we find:

Jan
x ⊂ mx ⇐⇒ Jπ(x)OXan,x ⊂ mXan,x ⇐⇒ fx ∈ mXan,x
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2.2. k-Analytic Spaces

Now, since πx is local:

fx ∈ mXan,x ⇐⇒ fπ(x) ∈ mX,π(x) ⇐⇒ f(x) = 0 ∈H (x) ⇐⇒ |f |x = 0

Therefore, Y an is the set of points of Xan = An,an that one might intuitively expect - namely,
the seminorms | · |x on k[T1, . . . , Tn] such that |f |x = 0.

Another example which will appear often is the analytification of the algebraic torus. As
a scheme, we have that Gm,k = Spec k[T, T−1], which is an open subscheme of the affine line.
Hence, the analytification is given by the set of points x ∈ A1,an

k such that the kernel is not the
ideal (T ), so Gan

m,k ⊂ A1,an
k consists of every point except for the type I point ζ0,0.

The analytification preserves several desirable properties, which we state without proof (see
[6, Theorem 3.4.8]). We will use these facts freely in the sequel. Let X be a scheme of locally
finite type over k. Then:

1. X is separated if and only if Xan is Hausdorff;
2. X is proper if and only if Xan is Hausdorff and compact;
3. X is connected if and only if Xan is arcwise connected;
4. the dimension of X equals the topological dimension of Xan.

The full theory of Berkovich spaces is a deep and rich field of study of which we have seen
only a small glimpse. Equipped with our understanding of analytic spaces, we now broaden our
investigations from the affine line to more general analytic curves.
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Chapter 3

k-Analytic Curves

In this chapter, we aim to further develop intuition surrounding the structure of analytic spaces.
Whereas giving an explicit picture for higher dimensional k-analytic spaces is difficult, curves
have the advantages that they yield visualisations as in the case of the affine line. The theory
of k-analytic curves is a rich field of study, and presently we will focus on studying curves and
their skeleta through formal models.

3.1 Generic Fibers of Formal Schemes
We first give an overview of the theory of formal schemes, following [8, Chapter 7]. Recall that
a topological ring A is said to have an a-adic topology, where a is an ideal of A, if the subsets
an form a basis of neighbourhoods of 0. The a-adic completion for such a ring is defined as
Â = lim←−nA/a

n; the resulting ring is Hausdorff and complete. Where b is an ideal such that
an ⊂ b and bn ⊂ a for some n, then the topologies generated by the two ideals are equivalent,
and any such ideal b is known as an ideal of definition of A.

Now assume A is a complete and Hausdorff a-adic ring. Similarly to the Spec construction,
the affine building blocks are given by Spf A, the formal spectrum. As a topological space, Spf A
is given by the underlying topological space of SpecA/a and hence, it consists of open prime
ideals of A. We endow Spf A with a structure sheaf OSpf A where for each open U ⊂ Spf A, we
define

OSpf A(U) = lim←−OSpecA/an(U)

where the inverse limit is taken in the category of topological rings, and the topology on each
OSpecA/an(U) is discrete. The right hand side of the expression is well defined, since for all n > 0,
the immersion SpecA/an → SpecA/a is a homeomorphism. Generally, a formal scheme is then
a locally topologically ringed space where each point has an open neighbourhood isomorphic to
an affine formal scheme. Morphisms of formal schemes are morphisms in the category of locally
topologically ringed spaces.
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3.1. Generic Fibers of Formal Schemes

We are interested particularly in a certain class of formal schemes, of which we now give an
overview following [28, §5.2.1]. Fix a non-zero element π of the maximal ideal of R, which is
then a π-adic ring. Let R{T1, . . . , Tn} be the algebra given by k{T1, . . . , Tn} ∩ R[[T1, . . . , Tn]].
Hence, it consists of formal power series over R in n variables which converge on the closed unit
disc. We say an R-algebra A is of topologically finite presentation (tfp) if it is isomorphic to
the algebra R{T1, . . . , Tm}/I, for some finitely generated ideal ideal I. In addition, A is called
admissible if it is tfp and it does not have π-torsion. If A is tfp, then it can be shown that A⊗R k
is a k-affinoid algebra admitting an admissible epimorphism k{T1, . . . , Tn} → A ⊗R k, for some
n. We will say that a formal R-scheme X is locally finitely presented (lfp), resp. admissible, if X
has a locally finite cover by open affine formal schemes of the form Spf A, where A is tfp, resp.
admissible.

Let X be a R-scheme with a locally finite covering by open subschemes SpecA, where each
A is finitely presented as a R-algebra. Then, we can define the formal completion X̂ as follows.
Let J be the quasi-coherent ideal sheaf generated by π. Then, X̂ is defined as a topological
space to be the topological space underlying the closed subscheme Y of X cut out by J, with the
sheaf of topological rings OX̂ = lim←−OX/J

n, where each sheaf OX/Jn is restricted to Y along the
inclusion Y → X. Locally, let X = SpecA; then X̂ is given by Spf Â, where Â is the completion
of A with respect to the ideal πA.

For a lfp formal scheme X, we define its special fiber Xs := X×R k̃, where the fiber product
is taken in the category of formal schemes. Then, Xs is a scheme locally of finite presentation
over k̃. Locally, the special fiber of X = Spf A is given by the scheme SpecA/mA.

Furthermore, we assign to an lfp formal scheme X a k-analytic space Xη, known as the
generic fiber of X. Firstly, if X = Spf A, then we set Xη =M (A⊗R k). A map Spf A → Spf B

corresponds to a continuous homomorphism B → A, which induces a homomorphism of k-affinoid
algebras B ⊗R k → A⊗R k and hence of M (A⊗R k)→M (B ⊗R k).

Next, assume X is separated and choose a locally finite covering by open affine formal sub-
schemes {Xi}i∈I . Then, each intersection Xij = Xi ∩Xj is also an affine open formal subscheme.
It is a fact that if Y → X is an open immersion of affine formal schemes, then Yη → Xη is the
embedding of an affinoid domain. Hence, we may glue the affinoid spaces {(Xi)η}i∈I along the
affinoid domains {(Xij)η}i,j∈I using theorem 2.2.9. A morphism Y → X of separated formal
schemes induces a morphism Yη → Xη by gluing the induced morphisms (Yi)η → X, where
{Yi} is a locally finite covering by open affine formal subschemes.

If X is arbitrary with a covering {Xi}i∈I by separated formal schemes, then the intersections
Xij are separated formal schemes, and it can be shown that (Xij)η is a compact analytic domain
in (Xi)η and (Xj)η. We may therefore glue (Xi)η and (Xj)η along (Xij)η as before to obtain
Xη. Since affinoid and compact analytic domains are closed subsets in a Hausdorff space, the
fact that the cover is locally finite is necessary to perform the gluing. Similarly to the separated
case, we may also define a morphism of k-analytic spaces Yη → Xη for any morphism Y→ X by
gluing appropriately. It may then be verified that η gives a functor, known as the generic fiber
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3.1. Generic Fibers of Formal Schemes

functor.

There is a canonical reduction map redX : Xη → Xs which is defined by the following pro-
cedure. Let x ∈ Xη be a point and Spf A ⊂ X such that (Spf A)η contains x. Then x defines a
character A ⊗R k → H (x) and hence a homomorphism A → A ⊗R k → H (x). The following
lemma shows that the image of this map lands inside H (x)◦.

Lemma 3.1.1. [28, Exercise 5.2.2.6] Suppose A is a tfp R-algebra, generated by f1, . . . , fn.
Then for all x ∈ (Spf A)η and 1 ≤ i ≤ n we have |fi|x ≤ 1.

Proof. We may find an admissible epimorphism φ : k{T1, . . . , Tn} → A⊗Rk such that Ti 7→ fi for
each i. Denote Bn =M (k{t1, . . . , tn}). Then the morphism φ induces a map φ∗ :M (A⊗R k)→
Bn, where a point x ∈ M (A⊗R k) gives a point φ∗(x) ∈ Bn by the equation |f |ϕ∗(x) = |φ(f)|x.
Hence, we see that |fi|x = |φ(ti)|x = |ti|ϕ∗(x) ≤ 1, where the final inequality follows from the
fact that the norm || · || on k{t1, . . . , tn} is such that ||ti|| = 1, and any element of the Berkovich
spectrum is bounded by this norm.

Lemma 3.1.1 shows that x ∈ (Spf A)η induces a map A → H (x)◦ where the image of the
ideal πA lands in H (x)◦◦. Hence, there is a well-defined map A/πA → H̃ (x). Then, redX(x)
is defined to be the point given by Spec H̃ (x) → Xs. This map is anti-continuous, in that the
inverse image of an open (resp. closed) set is closed (resp. open).

If X is an R-scheme locally of finite presentation, there are now two ways to obtain a k-
analytic space: either by taking the generic fiber of the formal completion X̂η or by taking the
analytification of the generic fiber Xan

k , where Xk := X ×R k. In general, there is a canonical
map X : X̂η → Xan

k , which we can construct as follows [13, §5.3]. By the universal property of
analytification, it suffices to give a map of locally ringed spaces X̂η → Xk. Consider the case
where X = SpecA is affine, for some finitely generated R-algebra A. There is a canonical map
A ⊗ k → Â ⊗ k and it is a standard result that Hom(Y,X) ∼= Hom(Γ(X,OX),Γ(Y,OY )) for a
locally ringed space Y and an affine scheme X [2, Tag 01I1]. Hence, we immediately obtain a
map X̂η → Xk, which gives the desired morphism iX : X̂η → Xan

k . This morphism is ‘functorial’
in the following sense: if X → Y is a morphism of affine schemes, then we have an induced
commuting square 1:

X̂η Xan
k

Ŷη Y an
k

This follows from the fact that for any morphism A → B of finitely presented R-algebras, the
1This may be more formally stated by saying that iX is a functor from the category of affine schemes to the

arrow category of k-analytic spaces.
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following square commutes.
A⊗ k Â⊗ k

B ⊗ k B̂ ⊗ k

As in the case of constructing the generic fiber functor, we may extend this map first to the
case where X̂ is a separated formal scheme, and then to the case where X̂ is non-separated, to
obtain a functorial canonical morphism iX for any scheme X locally of finite presentation over
R.

Example 3.1.2. Let X = A1
R. Then we find that Xan

k = A1,an
k , while X̂η = M (k{t}) is the

unit disk. In this case, iX :M (k{t}) ↪−→ A1,an
k is the canonical embedding of the closed unit disk

into the affine line.

Example 3.1.3. Let X be the affine line over R with doubled origin. As a scheme, this is formed
by gluing the affines SpecR[T ] and SpecR[S] by identifying the opens SpecR[T, T−1], SpecR[S, S−1]
using the isomorphism T 7→ S. The space Xk is then the analytic affine line with doubled origin.
However, the generic fiber of the formal completion of X is a little more interesting: it is in fact
the closed unit disk with doubled open unit disk which we previously encountered as an example
of a generalized space which is not good space. The map iX then identifies X̂η with the closed
unit disk in the affine line with doubled origin. Except for the origin, each point lying on an
open unit disk and its copy are both identified with the same point in Xan

k . Hence, iX is not
injective.

The following lemmas and theorems, adapted from [28, Exercise 5.2.3.1] describe the map iX
more generally. The details of these facts are often omitted in the literature, so we provide some
proofs.

Lemma 3.1.4. If X is an affine scheme of finite presentation, then iX is the embedding of an
affinoid domain.

Proof. Let X = SpecA. Suppose A is generated by f1, . . . , fn. Then, we may fix an admissible
epimorphism k{T1, . . . , Tn} → Â ⊗R k mapping Ti 7→ fi. By [6, Corollary 2.3.2], the induced
map

X̂η =M
(
Â⊗R k

)
→ Bn =M (k{T1, . . . , Tn})

is a closed immersion, that is, it is the embedding of an analytic domain with closed image.

The functoriality of iX then induces the following commuting diagram:

X̂η Xan
k

Bn An,ank

iX
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where the vertical and bottom maps are closed immersions of k-analytic spaces. Since the vertical
and bottom maps are injective, it follows that iX is also injective. Since the source is compact
and the target is Hausdorff, iX is a homeomorphism onto its image. Now let Z → Xan

k be a
morphism of k-analytic spaces such that the image is contained in X̂η ⊂ Xan. It follows that
there is an induced map Z → An,an

k with the image contained in Bn =M (k{T1, . . . , Tn}), hence
there is a induced map Z → Bn since Bn is an affinoid domain in An,an

k . Furthermore, the map
Z → Bn has image contained in X̂η, so since X̂η is an analytic domain in Bn, we conclude that
there is a map Z → X̂η. Since each induced map was uniquely determined by the map Z → Xan,
it follows that the map Z → X̂η is unique, so that iX : X̂η → Xan is the embedding of an affinoid
domain.

Lemma 3.1.5. The points y ∈ X̂η are in bijection with the set of maps SpecH (x)◦ → X

extending the map SpecH (x)→ X, where x = iX(y).

Proof. Fix a point y ∈ X̂η and let iX(y) = x. Now let SpecA be an affine open in X such
that y ∈ (Spf Â)η, from which it follows that iX(y) = x ∈ (SpecAk)

an. By lemma 3.1.4, the
restriction of iX to (Spf Â)η is the embedding of an affinoid domain into (SpecAk)

an; since the
completed residue field may be computed within an affinoid domain containing the point, it
follows that H (y) ∼= H (x).

Next, we consider the map

A→ Â⊗R k →H (y) ∼= H (x).

The image of A along this map lands in H (y)◦ ∼= H (x)◦ by lemma 3.1.1, so that there is a
factorisation A→H (x)◦. This gives a lift SpecH (x)◦ → SpecA ↪−→ X.

Conversely, suppose that such a lift exists. Then, the image of SpecH (x)◦ → X is con-
tained within some affine open SpecA, since H (x)◦ is local. Hence, we have a homomorphism
A → H (x)◦, which, by passing to completions, determines a homomorphism Â → H (x)◦

and subsequently a map Â ⊗R k → H (x). This is a character corresponding to some point
y ∈ (Spf Â ⊗R k)η ↪−→ X̂η. Since the map SpecH (x)◦ → X extends the map SpecH (x) → X,
it follows by construction of iX that iX(y) = x.

The two procedures are verified to be inverses of each other.

Theorem 3.1.6. If X is separated and quasi-compact then the map iX is the embedding of a
compact analytic domain.

Proof. The valuative criterion of separatedness indicates that there exists at most one lift SpecH (x)◦ →
X of a map SpecH (x)→ X. Hence, by lemma 3.1.5, iX is injective. The source is compact since
it is a finite union of affinoid domains which are compact and the target is Hausdorff, hence,
it must be a homeomorphism onto its image. At each point y ∈ X̂η there exists an affinoid
neighbourhood V of y in X̂η such that the restriction of iX to V is the embedding of an affinoid

29



3.2. Skeleta of k-Analytic Curves

domain V → Xan, hence iX(X̂η) ⊂ Xan is such that each point has an affinoid neighbourhood
in iX(X̂η). It follows that iX is the embedding of an analytic domain.

Corollary 3.1.7. If X is proper over R, then there is an isomorphism iX : X̂η
∼−→ Xan

k .

Proof. The valuative criterion of properness indicates that there exists precisely one lift SpecH (x)◦ →
X of a map SpecH (x) → X. By lemma 3.1.5, it follows that iX is surjective, and since X is
necessarily separated, we find that X̂η is an analytic domain in Xan

k , so that iX is an isomor-
phism.

Letting X = P1
R, we find that X̂η is the gluing of two closed disks M (k{T}) and M (k{S})

along the isomorphismM
(
k{T, T−1}

) ∼=M (
k{S, S−1}

)
given by T 7→ S−1. On the other hand,

Xan is the gluing of two copies of A1,an
k along the isomorphism Gan

m,k
∼= Gan

m,k given by T 7→ T−1.
Corollary 3.1.7 finally shows that the two constructions are isomorphic.

In this example, the formal scheme X̂ can be considered as a formal model for the k-analytic
space Xan.

Definition 3.1.8. A formal R-model X for a k-analytic space X is an admissible formal R-
scheme equipped with an isomorphism Xη ∼= X.

As we will see, models are spaces capturing the geometry of the k-analytic space in a (formal)
scheme which is potentially easier to study. If X is a proper k-scheme locally of finite type, then
Xan admits a formal model [28, Remark 5.3.3.2].

3.2 Skeleta of k-Analytic Curves

3.2.1 Classification of Points
To begin, we must consider the notion of dimension, which is more subtle for k-analytic spaces
than in the case of schemes. An obstruction is the fact that for k-affinoid algebras, the Krull
dimension is not preserved under extension of the base field. An example of this, as found in [28,
§3.5], is the k-affinoid algebra Kr := k{r−1T, rT−1}. For r 6∈

√
|k×|, Kr is a field, and hence

has Krull dimension 0, but Kr⊗̂kKr
∼= Kr{T} does not. This motivates the following definition.

Definition 3.2.1. [6, §2.3]. The dimension dim(X) of a k-affinoid space X = M (A ) is the
Krull dimension of the algebra A ⊗̂kK, where K is a non-Archimedean field extension of k such
that there exists an admissible epimorphism K{T1, . . . , Tn} → A ⊗̂kK.

It can be shown that such a field extension exists, and that dim(X) is independent of the
choice of extension. We extend this notion to a general k-analytic space X, by defining its
dimension dim(X) to be the supremum of the dimensions of the k-affinoid domains of X.

Following [4], we define a k-analytic curve to be the analytification of a smooth, proper,
geometrically connected algebraic curve over k. We caution the reader that other sources map
give more a general definition, which may require more theory to be built up, but our definition
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will capture all the cases we are interested in. It can be shown that such a space is of dimension
one by invoking the appropriate GAGA theorems [6, Corollary 3.2.8] [6, Proposition 3.4.3].

The classification of points for the affine line may then be extended to more general curves.
For each valued extension k ⊂ K, we associate the parameters:

E(K) = dimQ
(
|K×|/|k×| ⊗Z Q

)
F (K) = tr. deg.(K̃/k̃).

Let X be a k-analytic space of dimension n. Fixing a point x ∈ X, we denote E(x) :=

E(H (x)) and F (x) := F (H (x)). Then, it may be shown that E(x) + F (x) ≤ n [7, Lemma
2.5.2]. In the case where n = 1, we can then classify x as follows [28, §2.3.3]:

1. x is type I if H (x) ⊂ k̂a, where k̂a is the completed algebraic closure of k;
2. x is type II if E(x) = 0 and F (x) = 1;
3. x is type III if E(x) = 1 and F (x) = 0;
4. x is type IV if E(x) = F (x) = 0 and x is not of type I.

Note that if x is type I then E(x) = F (x) = 0. It may be verified that this is an extension of
our earlier classification of the points of the affine line over an algebraically closed field.

3.2.2 Skeleta of Annuli
For the rest of this chapter, we assume that k is algebraically closed.

Recall that we defined maps evT : A1,an
k → R≥0 and σ : R≥0 → A1,an

k , where evT (x) = |T |x
and σ(r) = ζ0,r. Using these maps, we were able to define several analytic domains in A1,an

k ,
including standard open and standard closed annuli, denoted by S(a, b)+ and S(a, b) respectively,
for some a, b ∈ k× with |a| ≤ |b|. When b = 1, we will denote the annulus as S(a). Denoting
c = ab−1, we have a series of isomorphisms:

S(a, b) ∼= S(c) ∼=M
(
k{t, |c| · t−1}

) ∼=M (k{t, s}/(st− c)) .

If X is any k-analytic space which is isomorphic to a standard closed (resp. open) annulus, then
we will call X a generalized closed (resp. generalized open) annulus. A standard annulus is any
standard open or standard closed annulus, and a generalized annulus is any space which is either
a generalized open or a generalized closed annulus. Similarly, if X is isomorphic to a standard
closed (resp. open) ball, then X will be called a generalized closed (resp. generalized open) ball.

Next, recall that we defined a strong deformation retraction from A1,an
k → σ(R≥0). In order

to obtain a suitable notion of a skeleton for an arbitrary curve, we make a similar definition for
an annulus.

Definition 3.2.2. [4, §2.3] For any standard closed or open annulus A, its skeleton is the subset

Σ(A) := σ(evT (A)).
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There is then a map ρA := σ ◦ evT which is a retraction of A onto Σ(A), and can be shown
to be a strong deformation retraction [6, Proposition 4.1.6]. If X is a generalized annulus, then
fixing an isomorphism φ : X → A for some standard annulus A, then the skeleton Σ(X) of X
is defined as φ−1(Σ(A)), and there is a corresponding retraction ρX = φ−1 ◦ ρA ◦ φ. It can be
shown that Σ(X) and ρX do not depend on A or φ [4, Corollary 2.6].

The following lemma describes the retraction map.

Lemma 3.2.3. [4, Lemma 2.12] Let A be a generalized annulus. Then A\Σ(A) is an analytic
domain in A isomorphic to an infinite disjoint union of open balls. If B is the topological closure
of an open ball B in the disjoint union, then B\B = {x}, and for every point y ∈ B, we have
ρA(y) = x.

Before giving the proof, we consider the standard closed annulus

S(1) =M
(
k{t, t−1}

) ∼=M (k{s, t}/(st− 1)) .

Then, the affine formal scheme X = R{s, t}/(st − 1) is such that Xη ∼= S(1), and hence X is a
formal R-model for S(1). In this case, Xs ∼= Spec k̃[s, t]/(st−1) is the affine open subscheme of the
affine line over k̃ given by removing the origin, and we wish to describe redX explicitly. Firstly,
consider the point x = ζ0,1 ∈ M

(
k{t, t−1}

)
. Then H̃ (x) ∼= k̃(t), and the map k̃[t, t−1] → k̃(t)

is the natural map. The kernel of this map corresponds to the zero ideal, hence redX(x) is the
generic point of Xs. Next, assume that x ∈ D(b, 1) for some b ∈ R×. The claim is that redX(x)

is the point given by the maximal ideal (t− b̃), where b̃ is the residue class of b in k̃. Indeed, we
see that |t− b|x < 1, so that (t− b̃) ⊂ ker(k̃[t, t−1]→ H̃ (x)). By maximality of (t− b̃) and the
fact that the kernel of the map k̃[t, t−1] → H̃ (x) is a prime ideal as H̃ (x) is a field, it follows
that the inclusion is an equality.

Proof of lemma 3.2.3. We elaborate on the proof given in loc. cit. If A = S(1), then the first
two claims follow by the remarks preceding the proof and the fact that k̃ is infinite. The last
statement is a consequence of the anti-continuity of redX. Indeed, let B be an open ball as in the
statement, so redX(b) = {y} for all b ∈ B, where y is a closed point. If z ∈ B, then z is contained
in any closed set containing B. Now let U be any open in Xs containing y; then red−1X (U) is a
closed set and so it contains z. Therefore, U contains redX(z). Since U was arbitrary, it follows
that z ∈ red−1X (ξ), where ξ is the generic point of Xs. Hence, z = ζ0,1.

Next, assume A is any generalized annulus, and by fixing an isomorphism, we may assume
it is a standard annulus. Let r ∈ evT (A). If r 6∈ |k×|, then we claim that ev−1T (r) is a single
type III point x. Indeed, if y is any point such that |T |y = r, then for any b ∈ k we have
|T − b|y = max{|T |y, |b|} = |T − b|x, so that y = x. Hence it suffices to consider when r ∈ |k×|.
In this case, we may rescale so that r = 1, in which case ev−1T (r) = S(1). It then suffices to
show that the connected components of S(1)\{ζ0,1} are the connected components of A\Σ(A)
since then we reduce to the previous case. This follows if S(1)\{ζ0,1} is both open and closed
in A\Σ(A). It is closed since S(1) is closed, and S(1)\{ζ0,1} = S(1) ∩ (A\Σ(A)), and it is open
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since it is a union of open balls of the form D(b, 1).

3.2.3 Semistable Vertex Sets and Semistable Reduction
Assuming X is a smooth proper connected algebraic curve over k, we now develop the theory of
semistable vertex sets following [4, §3-4], which allow the notion of a skeleton of an annulus to
be used to construct a skeleton for Xan.

Note that in the case of an annulus S(a, b), the skeleton is determined completely by the type
II points ζ0,|a| and ζ0,|b| which form the endpoints, since the skeleton is then the unique path
between the two points. Removing these two points results in a disjoint union of an open annulus
S(a, b)+ and infinitely many open balls. This observation motivates the following definitions.

Definition 3.2.4. [4, Definition 3.1] A semistable vertex set V of X is a finite set of type II
points V ⊂ Xan such that Xan\V is a disjoint union of open balls and finitely many generalized
open annuli. Such a decomposition is called a semistable decomposition.

Definition 3.2.5. [4, Definition 3.3] If V is a semistable vertex set for X, then the skeleton of
X with respect to V is

Σ(X,V ) = V ∪
⋃

Σ(A)

where A runs over the generalized open annuli in the semistable decomposition induced by V .

Next, we would like to define a retraction map Xan → Σ(X,V ) for any semistable vertex set
V , with the aid of the following result. Although the result is a generalisation of lemma 3.2.3, its
proof requires some additional theory on meromorphic functions on analytic spaces and hence is
omitted.

Lemma 3.2.6. [4, Lemma 3.4] Let V be a semistable vertex set for X and B a connected
component of Xan\Σ(X,V ). Then B is isomorphic to an open ball, and if B is the topological
closure of B in Xan, then B\B = {x} for some point x ∈ Σ(X,V ) known as the limit boundary
of B.

As a corollary, we see that Σ(X,V ) is a closed subset of Xan.

We now define a retraction map ρV : Xan → Σ(X,V ) with respect to V by setting ρV (x) =
x for any x ∈ Σ(X,V ) and ρV (x) to be the limit boundary of the connected component of
Xan\Σ(X,V ) containing x.

Lemma 3.2.7. [4, Lemma 3.8] The retraction ρV is a continuous map which agrees with the
retraction A→ Σ(A) when restricted to an open annulus in the semistable decomposition induced
by V .

Proof. By lemma 3.2.3, ρV is continuous on any open annulus A in the semistable decomposi-
tion, and agrees with ρA by lemma 3.2.3. We now show continuity, completing the part of the
proof which was left as an exercise in loc. cit.. Fixing x ∈ V , let U ⊂ Σ(X,V ) be an open
neighbourhood of x in Σ(X,V ). It suffices to show that x lies in the interior of ρ−1V (U). By
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shrinking U , we may assume that each connected component Ui of U\{x} is contained in an
open annulus Ai in the semistable decomposition. Then A′i = ρ−1V (Ui) is an open annulus. Let
{Bj} be the open balls in the semistable decomposition which retract to x. The claim is that

{x} ∪
⋃
Bj ∪

⋃
A′i

is an open neighbourhood of x. Consider its complement Y in Xan; then Y ∩ (Xan\
⋃
Ai) is

closed, and the set Y ∩ Ai is closed in Ai by the continuity of the restriction map on each open
annulus. It follows that Y is closed.

The language of semistable vertex sets can be seen as a translation of the theory of semistable
models of a curve into the analytic setting.

Definition 3.2.8. [4, §4] A semistable formal R-curve is an integral admissible formal R-curve X

such that the special fiber Xs is a connected reduced algebraic curve over k̃ where all singularities
are ordinary double points. A semistable formal model for X is a semistable formal R-curve with
an isomorphism Xη ∼= Xan.

A recurring motif is that the geometry of an analytic space can be determined by the structure
of the special fiber of a suitable model. As a first encounter, we look at a powerful theorem of
Bosch-Lütkebohmert, extended by Berkovich to the setting of k-analytic spaces, which generalizes
our earlier observations regarding the map redX : S(1)→ Spec k̃[T, T−1].

Theorem 3.2.9. [10, Prop. 2.3] [6, Theorem 4.3.1] Let X be an integral formal R-model for
an analytic curve Xan with a reduced special fiber Xs. Fix a point x ∈ Xs and denote by
Fx := red−1X (x) the formal fiber over x. Then:

1. x is the generic point of an irreducible component if and only if Fx consists of a single type
II point.

2. x is a smooth closed point if and only if Fx is isomorphic to a standard open ball.
3. x is an ordinary double point if and only if Fx is isomorphic to a standard open annulus.

It follows from this theorem and the anticontinuity of the reduction map that to any semistable
formal model X, the set V (X) of type II points red−1X (ξ) as ξ runs over the generic points of Xs is a
semistable vertex set. The reverse also holds: any semistable vertex set gives rise to a semistable
formal model.

Theorem 3.2.10. [4, Theorem 4.11] The correspondence X 7→ V (X) is a bijection between the
set of semistable formal models of X up to isomorphism and the set of semistable vertex sets of
X.

We omit the proof, which may be found in loc. cit. and instead walk through some examples
of how the inverse map is constructed. The general proof is not much more difficult than our
explicit examples, and we will sketch how the proof generalises in each case. There is a key
difference between the case of the projective line and other curves [4, Remark 4.17]. Firstly, recall
that for a field extension k ⊂ K there exists a curve C(K) over k unique up to isomorphism
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with function field K. Define the genus of a type II point x to be the genus of C(H̃ (x)). Any
type II point in P1,an

k has genus 0. If x is a type II point in Xan of positive genus, then it must
be contained within any semistable vertex set of Xan, since otherwise it has a neighbourhood
isomorphic to an open ball or open annulus which admit embeddings into P1,an

k .

The proof is split into several cases, and we exemplify each case here by considering X = P1
k,

fixing a semistable vertex set V and denoting by Σ its associated skeleton.

Σ consists of a single vertex. To exemplify this, let V = {ζ0,1}. In this case, P1,an
k \V is

an infinite disjoint union of open balls. Let B1 = D(0, 1) and B2 = D(∞, 1). The comple-
ments Y1 = X\B1 and Y2 = X\B2 are then the affinoid domains given by the closed balls
E(∞, 1) ∼= M (k{S}) and E(0, 1) ∼= M (k{T}) respectively. We have models for Y1 and Y2

given by Spf R{T} and Spf R{S} respectively. The intersection Y1 ∩ Y2 is the affinoid do-
main M

(
k{T, T−1}

) ∼= M (
k{S, S−1}

)
, where the isomorphism is induced by T 7→ S−1. The

intersections inform us how to glue the formal models for Y1 and Y2: we have open subsets
Spf R{T, T−1} ⊂ Spf R{T} and Spf R{S, S−1} ⊂ Spf R{S}. Gluing along the isomorphism
Spf R{T, T−1} ∼= Spf R{S, S−1} given by T 7→ S−1 recovers the semistable formal model P̂1

R

given by the formal completion of P1
R that we have previously encountered.

More generally, we fix two distinct balls B1, B2 in the semistable decomposition and let
Y1 = Xan\B1 and Y2 = Xan\B2. Then Y1 and Y2 are affinoid domains due to the following
lemma, the proof of which we omit due to its dependence on some aspects of the theory of which
we have not given a comprehensive treatment.

Lemma 3.2.11. [4, Lemma 4.12] Let X be a projective k-curve and Y ⊂ Xan an open analytic
domain isomorphic to either an open ball or an open annulus. Then Xan\Y is an affinoid domain
in Xan.

Then, we find models for Y1, Y2 and Y1 ∩ Y2 by the following lemma.

Lemma 3.2.12. [10, Proposition 1.1] Let M (A ) be a reduced k-affinoid space and assume k
is algebraically closed. Then the ring

A ◦ = {f ∈ A | |f |x ≤ 1 for all x ∈M (A )}

is a tfp R-algebra and for X = Spf A ◦, we have Xη ∼=M (A ).

In our current setting, k is algebraically closed and X is smooth, hence reduced. It follows
by [6, Proposition 3.4.3] that Xan is also reduced, in the sense that all local rings are reduced.
In particular any affinoid domain M (A ) in Xan is reduced. Furthermore, A has no π-torsion
since it is a k-algebra, and it follows from this that A ◦ is an admissible R-algebra. Hence, X is
an admissible formal model for M (A ), called the canonical model.

Gluing the canonical models for Y1 and Y2 along the canonical model for Y1 ∩ Y2 then gives
us the desired semistable formal model.
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Σ consists of a single edge. For this case, we can take V = {x = ζ0,r, y = ζ0,1}, where
0 < r < 1 and r = |c| for some c ∈ |k×|. Let Bx = D(0, r) and B′x = D(c, r), and similarly
By = D(∞, 1) and B′y = D(1, 1). We see that Y is the standard annulus S(c) which has a model
Y = Spf R{S, T}/(ST − c).

We may perform a change of coordinates by setting

U :=
T − c
T − 1

.

where T is the coordinate on P1
k. This induces an automorphism of P1

k, hence of P1,an
k . Assume

that x ∈ Y ′, so that |T − 1|x ≥ 1 and |T − c|x ≥ r. Analysing each of the cases r < |T |x <
1, |T |x ≤ r, |T |x ≥ 1, we find that r ≤ |U |x ≤ 1. From this it follows that the image of Y ′ lands
inside S(c). Furthermore, the transformation is self-inverse, so performing a similar calculation
shows that S(c) lands inside Y ′ under the inverse map, hence showing that this transformation
gives an isomorphism Y ′ ∼= S(c). Therefore, Y′ = Spf R{A,B}/(AB − c) is a model for Y ′.

The intersection Y ∩ Y ′ is modelled by open formal subschemes U ⊂ Y and U′ ⊂ Y′. By
theorem 3.2.9, the open subset U is obtained from Y by removing the closed points redY(B′x)

and redY(B′y). These correspond to the ideals of k̃[S, T ]/(ST ) given by (T − 1, S) and (T, S− 1)

respectively. Similarly, the open subset U′ is obtained from Y′ by removing the closed points
redY′(Bx) and redY′(By) corresponding to the ideals of k̃[A,B]/(AB) given by (A − 1, B) and
(A,B−1) respectively. The isomorphism U→ U′ is then induced by the homomorphism of rings
sending A 7→ T/(T − 1) and B 7→ S/(S − 1). It follows that the resulting formal model consists
of two copies of P1

k̃
intersecting transversally.

The general procedure is similar: we begin by choosing two open balls Bx, B′x retracting to
x and two open balls By, B′y retracting to y. Again, by lemma 3.2.11, Y = P1,an

k \(Bx ∪By) and
Y ′ = P1,an

k \(B′x ∪ B′y) are affinoid domains, and we let Y and Y′ be the respective canonical
models. It can be shown that each model consists of two curves intersecting at an ordinary double
point. The intersection Y ∩ Y ′ is an affinoid domain, and the canonical model is identified with
an open formal subscheme of each model by deleting a smooth point from each irreducible
component of the model. Gluing along these opens then gives the desired formal model.

Σ consists of at least two edges. Let V = {ζ0,1, ζ0,r, ζ0,r′}, where 0 < r′ < r < 1 and
r = |c|, r′ = |c′| for some c, c′ ∈ k. The induced semistable decomposition contains open annuli
S(c′, c)+ and S(c, 1)+. Then, Σ has edges e1 and e2 corresponding to the annuli A1 = S(c′, c)
and A2 = S(c, 1) respectively. Denote the vertices by x = ζ0,1, y = ζ0,r and ζ0,r′ = z.

Firstly, we consider the edge e1 with vertices x and y. The open ball Bx = D(0, r′) retracts to
x, and P1,an

k \(A2∪Bx) is the standard annulus A1, which has a model Y = Spf R{S, T}/(ST−d)
where d = c′c−1. We note that ρ−1V (x) = E(0, r′), which has model Yx = Spf R{U}. We find
that Bx is the formal fiber above the closed point ζ given by the origin of the special fiber of
Yx. Suppose that Cx = Spec k̃[T ] is the irreducible component of Y such that the generic point
of Cx has formal fiber {x}. Let ξ be the closed point where the irreducible components of Y1
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Figure 3.1: The relationship between a skeleton induced by a semistable vertex set and the
corresponding formal model. The top image shows the analytic projective line with the skeleton
in bold. Dashed arrows indicate the reduction map. Clouds above each projective line in the
semistable model shown at the bottom indicate the generic point of the component.

intersect. The intersection A1 ∩E(0, r′) is modelled by the open formal subscheme Cx\{ξ} of Cx
and Yx\{ζ} of Yx. We then have an isomorphism

Cx\{ξ} ∼= Yx\{ζ}

which is induced by the mapping U 7→ T−1. Gluing along this isomorphism results in a formal
scheme X1 topologically given by a projective line over k̃ intersecting transversally with an affine
line.

We may perform a similar procedure for the edge e2 and the vertex z, resulting in an isomor-
phic formal scheme X2. It now remains to glue the two formal schemes. To do this, we let D1 be
the irreducible component of X1 whose generic point has formal fiber {y}, and similarly define D2

with respect to X2. Topologically, D1 is homeomorphic to Spec k̃[S], and D2 is homeomorphic
to Spec k̃[V ]. Let ξ1 and ξ2 be the ordinary double points of the special fibers of X1 and X2

respectively. Then, we see that the formal fibers above D1\{ξ1} and D2\{ξ2} are both given by
the affinoid domain given by A1 ∩ A2

∼= S(1). We therefore glue X1 and X2 along the following
isomorphism

D1\{ξ1} ∼= Spf R{S, S−1} ∼= Spf R{V, V −1} ∼= D2\{ξ2}

where the middle isomorphism maps S 7→ V −1. This procedure results in a projective line with a
projective line intersecting transversally at 0 and another projective line intersecting transversally
at infinity, visualised in fig. 3.1.
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In the general case, we begin by fixing an edge e. Suppose the open annuli in the semistable
decomposition are A0, . . . , An, and by permuting indices that e contains ρ(A0). There are two
cases to consider.

If e has a vertex x which is not contained in any other edge in Σ 2, then we choose an open
ball Bx retracting to x. It can be shown that Y = ρ−1(x) is an affinoid domain, by arguing
that Xan\(

⋃n
i=0Ai) is an affinoid domain using lemma 3.2.11 and using the fact that ρ−1(x) is a

connected component. We let Cx be the canonical model for ρ−1(x). Similarly, we can show that
Y ′ = ρ−1(e)\Bx is an affinoid domain with canonical model Y, by arguing that it is a connected
component of Xan\(Bx∪

⋃n
i=1Ai). The intersection Y ∩Y ′ is then modelled by isomorphic open

formal subschemes of Cx and Y, giving the appropriate gluing data.

In the second case, both vertices of e are contained in other edges of Σ. We again argue
that ρ−1(e) is an affinoid domain since it is a connected component of \(

⋃n
i=1Ai). Let D be the

canonical model; then the formal fibers above closed points are given by connected components
of ρ−1(e)\{x, y}. These connected components are the open balls which retract to either x or
y, or A0, so it follows that D consists of two irreducible components intersecting at an ordinary
double point ξ. If C is the irreducible component whose generic fiber has formal fiber {x}, then
the canonical model for ρ−1(x) is given by C\{ξ}. If e′ is another edge with vertex x, then
ρ−1(e) ∩ ρ−1(e′) = ρ−1(x), so that by repeating this procedure for e′, we obtain the necessary
gluing data for the respective canonical models.

A natural question to ask now is whether any k-analytic curve has a semistable decomposition,
and hence, a skeleton. The following theorem answers this positively in the algebraically closed
case.

Theorem 3.2.13 (Semistable Reduction Theorem). [10, Theorem 7.1] Let X be a smooth,
projective, geometrically connected curve over k, where k is not necessarily algebraically closed.
Then, there exists a finite extension k ⊂ k′ with valuation ring R′ such that (X ×k k′)an admits
a semistable formal R′-model.

Hence, when k is algebraically closed, we deduce by our correspondence that a k-analytic
curve Xan has a semistable vertex set.

2Note that this case is missing from the proof of [4, Theorem 3.2.10].
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Chapter 4

Skeleta in Higher Dimensions

Throughout this section, let k be the fraction field of a discrete valuation ring R which has
uniformizer π. We will denote by X a smooth, proper, connected k-scheme. Once again, we
will use the notion of models to study k-analytic spaces, but it is more convenient here to use
schemes as opposed to formal schemes. The aim of this section is to generalise the notion of
skeleta to higher dimensions.

4.1 R-Models
To begin, we define an R-model for X to be a flat, proper, R-scheme X equipped with an
isomorphism Xk

∼= X, where Xk = X ×R k denotes the generic fiber. The assumption that
the model is proper may be weakened, but we include it here to simplify the presentation. A
morphism of R-models h : X ′ → X is a morphism of R-schemes which is compatible with the
isomorphisms X ′

k
∼= X and Xk

∼= X in the following sense. By the universal property of the
fiber product, h induces a morphism hk : X ′

k →Xk. We then require that the following diagram
commutes, where the diagonal maps are the isomorphisms specified by the model.

X ′
k Xk

X

∼

hk

∼

For an R-model X , we may consider the space X̂η, which is isomorphic to Xan due to the
properness assumption. We find that X̂s

∼= Xs, and so we obtain a map redX : X̂η → Xs.
Fixing a point x ∈ X̂η and choosing U = SpecA ⊂ X to be such that x ∈ Ûη, we find that
redX (x) corresponds to the prime ideal of A given by {a ∈ A | |a|x < 1}. We note that if
h : X ′ →X is a morphism of R-models, then one sees that h ◦ redX ′ = redX .

Furthermore, x defines a multiplicative seminorm on OX ,redX (x). Indeed, if f ∈ OX ,redX (x),

39



4.2. The Skeleton of a Strict Normal Crossings Model

then f is regular on some neighbourhood U = SpecA, and we find that x induces a seminorm
on A. To see that this is well-defined, let x ∈ V ⊂ U , with U = SpecA and V = SpecA′.
The open immersion V → U induces an open immersion V an

k → Uan
k by [6, Proposition 3.4.6],

and a morphism V̂η → Ûη. By considering the following diagram and replicating the proof of
lemma 3.1.4, we see that that V̂η → Ûη is the embedding of an affinoid domain.

V̂η Ûη

V an
k Uan

k

It follows from this observation that the following diagram commutes, where the top map is the
restriction map, showing that the seminorm is well-defined.

A A′

H (x)

res

4.2 The Skeleton of a Strict Normal Crossings Model

4.2.1 Strict Normal Crossings Divisors
The notion of a strict normal crossings model can be seen as a generalisation of semistable formal
models to the current setting.

Definition 4.2.1. [20, Chapter 9, Definition 1.6] Let D be an effective Cartier divisor on a
locally Noetherian scheme X. Let {Di}i∈I be the irreducible components of D considered as
reduced subschemes. Then, the following are equivalent.

1. For each p ∈ D, the ring OX,p is a regular ring with a regular system of parameters
z1, . . . , zn such that D is locally given by the vanishing of the monomial zN1

1 · · · zNr
r for

some r ≤ d and positive integers N1, . . . , Nr.
2. Each Di is an effective Cartier divisor and the scheme theoretic intersection

⋂
j∈J Dj is a

regular subscheme of codimension |J | in X, where J ⊂ I is finite.

If D satisfies the above, it is called a strict normal crossings divisor on X.

The special fiber Xs of an R-model is a closed subscheme whose ideal sheaf is locally generated
by the element π. A module over a discrete valuation ring is flat if and only if the uniformizer
π is not a zero divisor, hence Xs is an effective Cartier divisor on X .

A regular R-model X where Xs is a strict normal crossings divisor is called an snc model.
For brevity, an snc system of parameters will refer to a regular system of parameters at a point
z ∈Xs such that Xs is locally given by the vanishing of the monomial zN1

1 · · · zNr
r and zi = 0 is a

local equation for the irreducible component Di. Note that we allow each irreducible component,
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when considered as a prime divisor, to appear with multiplicity.

In general, it is not known whether snc models exist for a given scheme X. Starting from a
proper R-model, we may produce an snc model using resolution of singularities; here, we state
a stronger version which will be useful for some proofs in this chapter.

Theorem 4.2.2 (Embedded Resolution of Singularities). [18, 16, 15, 14] Let (W,Y ) be a pair
such that Y is a divisor on an excellent, reduced scheme W . Assume W has characteristic zero,
or that W has dimension at most three and is separated. Then, there exists a proper birational
morphism Π : W ′ → W such that W ′ is regular, the total transform of Y is a strict normal
crossings divisor in W ′ and Π is an isomorphism outside of Sing(Y ) ∪ Sing(W ), where Sing(·)
denotes the singular locus of a scheme.

For our purposes, the algebraic condition of excellence always holds since any complete local
Noetherian ring is excellent, and a finitely generated algebra over an excellent ring is excellent.
Proper R-models exist due to Nagata’s compactification theorem, and then Theorem 4.2.2 may
be used, assuming that X satisfies the relevant conditions, to produce an snc model from a
proper R-model X , by applying the theorem to the pair (X ,Xs). In general, we will assume
the existence of an snc model for X.

To begin, we explore how blow-ups allow us to construct snc models from existing ones.
Throughout the chapter, we will freely use the following standard facts about blow-ups, references
for which can be found in [20, Chapter 8].

Firstly, if X is a scheme and Π : X ′ → X is the blow-up along some center Z, then for any
open U ⊂ X, Π−1(U) is isomorphic to the blow-up of U along U ∩ Z. Hence, blow-ups can be
computed locally and patched together.

Assume next that U = SpecA is a Noetherian, integral affine scheme and the blow-up U ′ → U

has center cut out by the ideal I = (f1, . . . , fn), where fi 6= 0. Then, U ′ is covered by affines
of the form SpecAi, where Ai ⊂ Frac(A) is the A subalgebra of Frac(A) generated by fj/fi, for
j 6= i. It follows from these facts that if X is additionally a flat R-scheme, then X ′ is also a
flat R-scheme. If both X and the center Z are regular, then the blow-up of X along Z is also
regular.

If X is locally Noetherian, the blow-up along a closed subscheme cut out by a quasi-coherent
ideal sheaf is a proper morphism, and Π restricts to an isomorphism away from the center of
the blow-up. Furthermore, a composition of proper morphisms is proper, hence a sequence of
blow-ups gives a a proper morphism.

Proposition 4.2.3. Let X be an snc model and Z a closed subscheme such that one of the
following holds:

1. Z = {z} for a closed point z, such that z ∈Xs;
2. Z is a connected component of an intersection ∩ri=1Di of irreducible components of Xs.

Let Π : X ′ →X be the blow-up with center Z. Then X ′ is an snc model.
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Proof. Assume we are in the first case. There is an isomorphism of the generic fibers X ′
k
∼= Xk

since the blow-up has center contained in the special fiber. We see that X ′ is a regular R-model
by standard results on blow-ups.

We now show that X ′
s = X ∗

s +E is an snc divisor, where X ∗
s denotes the strict transform of

Xs and E is the exceptional divisor. It suffices to work in an affine neighbourhood U = SpecA

of z, in which case the blow-up U ′ → U with center z may be computed as follows. Let z1, . . . , zn
be an snc system of parameters at z, so that by shrinking U as necessary, z corresponds to a
maximal ideal of A generated by (z1, . . . , zn) and Xs is given by the vanishing of the function
zN1
1 · · · zNr

r in U . The blow-up U ′ → U can be covered by charts Ui = SpecAi where

Ai := A[T1, . . . , T̂i, . . . Tn]/(Tjzi − zj)j ̸=i.

We show that X ′
s ∩ Ui is a divisor with strict normal crossings in each Ui.

Consider the case where i = r; the other cases are similar. Then, if J is the ideal of A
generated by π, we have

J ·Ai = (zN1
1 · · · zNr

r ) ·Ai =

((
z1
zr

)N1

· · ·
(
zr−1
zr

)Nr−1

· zN1+···+Nr
r

)
=
(
TN1
1 · · ·TNr

r · zN1+···+Nr
r

)
.

Since the exceptional divisor is given by the vanishing of zr in the chart Ur, it follows that the
strict transform X ∗

s is cut out by the monomial TN1
1 · · ·TNr−1

r−1 in Ur. A prime component is
given by the vanishing of Tj , and hence is the strict transform of the prime component Dj of Xs

given by the vanishing of zj . Since the strict transform of Dj is isomorphic to the blow-up of
Dj with center z, we see that it is regular. To show regularity of the intersections, it suffices to
consider the subscheme SpecAi/(Ti1 , . . . , Tim , zr) for some set of indices i1, . . . , im. We assume
for ease of notation that the indices are {1, . . . ,m}, for some m < r. We now find that:

SpecAi/(T1, . . . , Tm, zr)

∼= SpecA[T1, . . . , T̂r, . . . , Tn]/(Tjzr − zj , T1, . . . , Tm, zr)j ̸=r
∼= Spec(A/(z1, . . . , zn))[Tm+1, . . . , Tn]

∼= SpecK[Tm+1, . . . , T̂r, . . . , Tn].

where K is a field. Hence, we see that the intersection is regular and of codimension n − (n −
m− 1) = m+ 1, as required.

The proof of the second case is done via a similar computation.

4.2.2 Monomial and Divisorial Points
Let X be an snc model for X. Using the notation as above, if ξ is a generic point of some
connected component of an intersection ∩ri=1Di of Xs, then there exists an snc system of pa-
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rameters z1, . . . , zr and a unit u in OX ,ξ such that π = uzN1
1 · · · zNr

r for some positive integers
N1, . . . , Nr. The aim of this section is to see how the special fiber identifies a subset of points of
X̂η, known as monomial and divisorial points.

To begin the construction of such points, we require the following lemma, which can be seen
as a generalisation of the idea that for a local ring A with a principal maximal ideal m = (π),
every element of the m-adic completion Â can be written as a power series in π.

Lemma 4.2.4. [21, Lemma 2.4.4] Let z1, . . . , zn be a regular system of parameters for the
maximal ideal of OX ,ξ. Let ÔX ,ξ be the completion with respect to the maximal ideal. Then,
every element f ∈ ÔX ,ξ can be written in the form

f =
∑
β∈Zn

≥0

cβz
β (4.1)

where each cβ is zero or a unit in ÔX ,ξ. Such an expansion is called an admissible expansion for
f .

Proof. The proof is reproduced from loc. cit. here. Denote by mξ the maximal ideal of ÔX ,ξ.
Fix an element f ∈ ÔX ,ξ and assume that f lies in mξ since otherwise we are done. Now let
i ≥ 1 and assume that for all j ≤ i, any f ′ ∈ ÔX ,ξ has an expansion of the form:

f ′ = f ′i +

∑
|β|=i

cβz
β


where f ′i is an element which has an admissible expansion and each cβ is some element of ÔX ,ξ.
In particular, for j = i, f has such an expansion:

f = fi +

∑
|β|=i

cβz
β

 .

For each coefficient cβ in the expansion for f , we may apply the assumption with j = 1, so that
we can write f in the form:

f = fi +
∑
|β|=i

(cβ,i + d1z1 + · · ·+ dnzn)z
β

=

fi + ∑
|β|=i

cβ,iz
β

+

∑
|β|=i

d1z1z
β + · · ·+ dnznz

β


= fi+1 + gi+1

where cβ,i is an element admitting an expansion of the form 4.1. We see that fi+1 is an element
with an admissible expansion while gi+1 is a monominal in z1, . . . , zn of degree i+1. Furthermore,
the coefficients of fi+1 and fi agree in degree < i. Iterating this gives an admissible expansion
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for f .

Lemma 4.2.5. [21, Prop. 2.4.6] The element 0 ∈ ÔX ,ξ has a unique admissible expansion,
where all coefficients are 0.

Proof. Let
0 =

∑
β∈Zr

≥0

dβz
β

be an admissible expansion for 0. The claim is that for each β, dβ lies in the maximal ideal m
of ÔX ,ξ, hence must be zero. We show this by inducting on |β|, and using the following result
from commutative algebra.

Lemma 4.2.6. [1, Prop. 11.20] Let z1, . . . , zr be a regular system of parameters for a local ring
A with maximal ideal m and f(t1, . . . , tr) a homogeneous polynomial of degree s with coefficients
in A. Assume that f(z1, . . . , zr) ∈ ms+1. Then all coefficients of f lie in m.

In the base case, we have that d0 must lie in the maximal ideal, since

d0 = −
∑
|β|>1

dβz
β .

Assuming that dβ = 0 for all β such that |β| ≤ s for some s ≥ 0, we consider the homogeneous
polynomial of degree s+ 1 given by:

f =
∑
|β|=s+1

dβt
β .

The parameters z1, . . . , zr generate m and we must have that f(z1, . . . , zr) lies in ms+1 by the
inductive hypothesis and rearranging the expansion. Hence, all coefficients lie in m by the
lemma.

The utility of an admissible expansion is the following. Firstly, note that for any f ∈
OX ,redX (x) for a point x ∈ X̂η, vx(f) ≥ 0. From this we observe that if f is a unit in OX ,redX (x),
then vx(f) = −vx(f−1), so vx(f) = 0. The same then holds true for ÔX ,redX (x). Hence, finding
an admissible expansion for an element f ∈ OX ,redX (x) as in eq. (4.1), we see that

vx(f) ≥ min{α · β | β ∈ Zn≥0, cβ 6= 0} (4.2)

where α · β denotes the dot product, and α = (vx(z1), . . . , vx(zn)). Due to the equation π =

uzN1
1 · · · zNr

r , we must have that vx(z1)N1+· · · vx(zr)Nr = 1. These ideas lead to the construction
of ‘monomial points’, which are the points where eq. (4.2) is an equality.

Proposition 4.2.7. [21, Prop. 2.4.6] Let D1, . . . , Dr be irreducible components of Xs, and ξ

the generic point of a connected component of ∩ri=1Di. Let Ni be the multiplicity of Di in Xs
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and let α = (α1, . . . , αr) ∈ Rr≥0 be such that α1N1 + · · ·+ αrNr = 1. Then, there exists a point
x ∈ X̂η inducing a valuation vx : K(X)× → R such that for each f ∈ OX ,ξ and any admissible
expansion of f as in eq. (4.1), we have:

vx(f) = min{α · β | β ∈ Zm≥0, cβ 6= 0}.

The point x is then called a monomial point with presentation (X , (D1, . . . , Dr), ξ, α).

Proof. We give an alternative proof from the one presented in loc. cit..

Firstly, assume by permuting indices that α = (α1, . . . , αr′ , 0, . . . , 0), where α1, . . . , αr′ are
non-zero, for some r′ ≤ r.

Define for each α ∈ Rr≥0 and w ∈ R the ideal I≥w of ÔX ,ξ generated by the monomials zβ

such that α · β ≥ w, and the ideal I>w generated by the monomials zβ such that α · β > w.
Denoting by κ the residue field of ÔX ,ξ, the claim is that I≥w/I>w is a κ vector space with a
basis given by zβ where α ·β = w. To see this, first note that if α ·β = w for some β and w, then
zβ ∈ I≥w\I>w. Indeed, suppose that zβ ∈ I>w; then, we may write zβ = c1z

β1 + · · · + cnz
βn ,

and, choosing admissible expansions for each ci, we may find an admissible expansion

zβ +
∑
α·γ>w

cγz
γ = 0.

By, lemma 4.2.5, each coefficient in the admissible expansion must be zero, giving a contradiction.
Hence, the classes of the elements zβ give a generating set for I≥w/I>w. A similar argument
shows that any finite sum

c1z
β1 + · · ·+ cmz

βm

where each ci is a unit, is not contained in I>w, so that the classes of the elements zβ with
α · β = w form a basis for I≥w/I>w.

For each element f of ÔX ,ξ, there exists some w such that f ∈ I≥w\I>w, which must be
unique since R is totally ordered. To see this, fix an admissible expansion for f with coefficients
cβ and let v = min{α · β | cβ 6= 0}. We can then write

f =
∑
α·β=v

cβz
β +

∑
α·β>v

cβz
β

= f ′ + f ′′.

The ideal I>v is closed in the mξ-adic topology; for this it suffices to show that⋂
i>0

(I>v +miξ) ⊂ I>v.

This follows from the fact that miξ is generated by monomials of degree i in the z1, . . . , zn, so for
i large enough, miξ ⊂ I>w. A similar argument shows that I≥v is closed. It follows from this that
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f ′′ ∈ I>v and f ′ ∈ I≥v, and by considering reductions modulo I>v we see that f 6∈ I>v. Hence
v is the unique real number such that f ∈ I≥v\I>v, and in particular vx is independent of the
choice of admissible expansion.

Since ideals are closed under addition, we find that vx(f + g) ≥ min{vx(f), vx(g)}. Next, let
f be the reduction of f modulo I>v, and write

f =
∑
α·β=w

dβz
β

where dβ ∈ κ. We define Γf as follows: for each choice of β1, · · · , βr such that α1β1+· · ·+αr′βr′ =
v, β = (β1, · · · , βr) is in Γf if βr′+1 + · · · + βr is minimal amongst all possible choices of
βr′+1, . . . , βr such that dβ 6= 0. We then define the polynomial

fα =
∑
β∈Γf

dβz
β .

Then, we can view fα as an element of κ[z1, . . . , zn]. To show vx(f · g) = vx(f) + vx(g), we now
fix admissible expansions for f and g, and a computation shows that (f · g)α = fα · gα, where
the latter product is taken in the ring κ[z1, . . . , zn].

Since π = u · zN1
1 · · · zNr

r is an admissible expansion, vx(π) = α1N1 + · · · + αrNr = 1.
Hence, vx extends the valuation on k. We conclude by noting that although vx is currently
only defined on the local ring OX ,ξ, it extends to a valuation on K(X ) ∼= K(X) by setting
vx(f/g) = vx(f)− vx(g).

Let ξ be the generic point of a connected component of ∩ri=1Dr, and suppose α has zero
entries. Then we may, after permuting indicies, assume that α = (α1, . . . , αr′ , 0, . . . , 0) with
α1, . . . , αr′ non-zero. Then, the formula for vx shows that it is also the monomial point with
presentation

(X , (D1, . . . , Dr′), ξ
′, α′)

where α′ = (α1, . . . , αr′) and ξ′ is the generic point of the connected component of ∩r′i=1Di which
contains ξ.

When ξ is the generic point of an irreducible component D, then OX ,ξ is a discrete valuation
ring with fraction field equal to K(X). In this case, the valuation on K(X) such that the
valuation ring is OX ,ξ coincides with the valuation given by the monomial point corresponding
to the data (X , D, ξ, α = 1). The point is then called a divisorial point associated to the data
(X , D).

Note that a point which is monomial with respect to a given model may in fact be divisorial
with respect to another snc model. The following lemma and proposition form the contents of
the proof of [21, Prop. 2.4.11], and characterize when such a case occurs.

Lemma 4.2.8. Let D1, . . . , Dr be prime components of Xs for some snc model X and ξ the
generic point of a connected component of D1 ∩ · · · ∩ Dr. Let X ′ → X be the blow-up at
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the closure of ξ. If x ∈ X̂η is a point with monomial presentation (X , (D1, . . . , Dr), ξ, α), then
x is also monomial with respect to X ′. If α = (α1, . . . , αr) is such that α1 is the minimal
coordinate, D′2, . . . , D′r are the strict transforms of D2, . . . , Dr and E is the exceptional divisor,
then x has monomial presentation (X ′, (E,D′2, . . . , D

′
r), ξ

′, α′) where ξ′ is the generic point of
E ∩D′2 ∩ · · · ∩D′r and α′ is the tuple

α′ = (α1, α2 − α1, . . . , αr − α1).

Proof. By proposition 4.2.3, X ′ is an snc model. Let U = SpecA be an affine neighbourhood
of ξ such that if z1, . . . , zr is an snc system of parameters, then ξ corresponds to the prime ideal
(z1, . . . , zr) of A. We have that redX ′(x) is the point of SpecA[T2, . . . , Tr]/(Tjz1 − zj) ⊂ X ′

corresponding to the prime ideal (z1, T2, . . . , Tr). The vanishing of the elements Tj define the
strict transforms D′j of Dj for each 2 ≤ j ≤ r, and the vanishing of z1 defines the exceptional
divisor. In particular, we can take z1, T2, . . . , Tr to be an snc system of parameters.

Now, let x′ be the monomial point corresponding to the data (X ′, (E,D′2, . . . , D
′
r), ξ

′, α′) as
in the statement of the lemma. Since redX (x′) = redX (x), to show that x′ = x, it suffices to
show that for all f ∈ OX ,redX (x), vx(f) = vx′(f).

Fix f ∈ OX ,redX (x). Let
f =

∑
cβz

β1

1 · · · zβr
r

be an admissible expansion for f in ÔX ,redX (x). We note that

f =
∑

cβz
β1+···+βr

1 T β2

2 · · ·T βr
r

gives an admissible expansion for f in ÔX ,redX ′ (x′). It follows immediately from the formulae
for vx and vx′ that vx(f) = vx′(f).

Proposition 4.2.9. [21, Proposition 2.4.11] A monomial point x of X̂η with a monomial pre-
sentation

(X , (D1, . . . , Dr), ξ, α)

is divisorial if the entries of α are rational.

Proof. Let X ′ → X be the blow-up at the closure of ξ. We may assume by permuting indices
that α1 is the minimial coordinate. Then, by lemma 4.2.8, X ′ is an snc model where the
monomial presentation of x with respect to X ′ is such that α′ = (α1, α2 − α1, . . . , αr − α1).
Since each coordinate is rational, we can assume α is of the form

(
a1
b , . . . ,

ar
b

)
for positive integers

a1, . . . , ar and some integer b. Hence, repeating this process and removing any zero entries, we
reduce to the case where r = 1. This gives a divisorial presentation.
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4.2.3 The Retraction to the Skeleton
The skeleton Sk(X ) of Xan induced by an snc model X is defined as the set of points of Xan

which are monomial with respect to X . The space Sk(X ) has a particularly elegant topological
description as the dual complex ∆(Xs) of Xs [22, §2.4.2].

Let {Di}i∈I be the irreducible components of Xs, and J ⊂ I a non-empty finite subset.
Then, the dual graph ∆(Xs) contains an r-simplex for each connected component of ∩j∈JDj ,
where r = |J | − 1. We make the following identifications. Let C ⊂ ∩j∈JDj and C ′ ⊂ ∩k∈J ′Dk

be two connected components corresponding to simplicies E and E′. Then E is a face of E′ if
and only if we have C ′ ⊂ C. There is a homeomorphism Φ : ∆(Xs) → Sk(X ). We describe
the construction of the map and omit the proof that it gives a homeomorphism which may be
found in [22, §2.4.4]. Let x ∈ ∆(Xs) be a point; if it is a vertex, then it corresponds to an
irreducible component D ⊂Xs and we map it to the divisorial point with presentation (X , D).
Otherwise, y lies on the interior of a simplex corresponding to some connected component of an
intersection ∩j∈JDj . Let r = |J |, ξ be the generic point of the component and let (w1, . . . , w|J|)

be the coordinates of y considered as a point on the simplex. Then w1 + · · · + wr = 1, so
α = (w1/N1, . . . , wr/Nr) is such that α1N1 + · · ·+ αrNr = 1. We then map y to the monomial
point with presentation (X , (D1, . . . , Dr), ξ, α).

The inclusion Sk(X ) ⊂ X̂η admits a continuous retraction ρX : X̂η → Sk(X ) [21, §3.1.5].
For any x, let D1, . . . , Dr be the irreducible components of Xs passing through redX (x). Fix
1 ≤ i ≤ r. Letting z1, . . . , zn be an snc system of parameters at redX (x) such that Di is locally
given by the vanishing of zi, set vx(Di) := vx(zi). Note that N1vx(z1) + · · · + Nrvx(zr) =

vx(π) = 1, so that setting α = (vx(z1), . . . , vx(zr)) and letting ξ be the generic point of the
connected component of ∩ri=1Di which contains redX (x), we set ρX (x) to be the point with
monomial presentation (ξ, α) with respect to the model X . This is well-defined: the parameters
z1, . . . , zr are determined up to multiplication by a unit in OX ,redX (ξ), so if z′i is another function
defining Di locally, then zi = u · z′i for some unit u ∈ OX ,redX (ξ). Since vx(u) = 0 it follows
that vx(zi) = vx(z

′
i). We also see that vx(D) = vρX (x)(D) for every prime component D of

Xs passing through redX (x). We remark for later use that the construction vx(D) extends to
any divisor D which is not supported on ι(x), by similarly choosing a local equation for D at
redX (x).

The retraction map has the following properties, which we state without proof. Denote y =

ρX (x), for any f ∈ OX ,redX (x). If f ∈ OX ,redX (x) is a function regular on some neighbourhood
U of redX (x), then note that U contains redX (y) so that we may consider |f |y. Then, |f |x ≤ |f |y
for every f ∈ OX ,redX (x) [21, Prop. 3.1.6]. The following proposition shows that the retraction
map is well-behaved with respect to blow-ups.

Proposition 4.2.10. [21, Prop. 3.1.7] If X ′ → X is a proper morphism of snc models of X,
i.e. a proper morphism of R-models where both X ,X ′ are snc, then ρX ◦ ρX ′ = ρX and
Sk(X ) ⊂ Sk(X ′).

In the case of curves, we have the following characterisation of the retraction points.

48



4.2. The Skeleton of a Strict Normal Crossings Model

Proposition 4.2.11. Let X be a curve and x, y ∈ X̂η be distinct points such that ρX (x) =

ρX (y). Then, ρX (x) is a divisorial point.

Proof. Without loss of generality, we may assume that y = ρX (x) is a monomial point which is
not divisorial with respect to X . Let (ξ, (α1, α2)) be a monomial presentation for y with respect
to the model X and let z1, z2 be a regular system of parameters at redX (x) = redX (y) =: ξ,
such that ξ is the generic point of the intersection of the vanishing loci of z1 and z2. It suffices to
show that |za1 |y = |πb| for some a, b, since then α1 and α2 must be rational and we can conclude
using proposition 4.2.9.

Assume x is not a type III point; then we are done, since |H (x)×|/|k×| is a rank 0 abelian
group and hence for every element r ∈ |H (x)×|, we have ra ∈ |k×|. for some a ∈ Z≥0

Now, we assume that both x and y are type III points and proceed to assume that α1 and α2

are irrational. Since x and y are distinct, we can assume that there exists some f ∈ OX ,redX (x)

such that vx(f) 6= vy(f). Choosing an admissible expansion for f :

f =
∑

cabz
a
1z
b
2

we see that

vx(f) = vx

(∑
cabz

a
1z
b
2

)
= min{vx(cab) + aN1α1 + bN2α2}

= min{vy(cab) + aN1α1 + bN2α2}

= vx

(∑
cabz

a
1z
b
2

)
= vy(f)

where we have used the irrationality of α1 and α2 to sharpen the triangle inequality into an
equality, and the fact that vx(c) = vy(c) = 0 for any unit c ∈ ÔX ,redX (x). Hence, we arrive at a
contradiction, so it follows that α1 and α2 are rational.

A corollary of the proof of proposition 4.2.11 is that for any type III point x monomial with
respect to an snc model X , we have that ρ−1X (x) = {x}.

We now consider how blow-ups of snc models affect the skeleton of a curve. Let X be an snc
model for a curve X, D1, D2 irreducible components of Xs and z the closed point contained in
a connected component of the intersection D1 ∩D2. Let X ′ → X be the blow-up at z and σ

the interval of Sk(X ) corresponding to z. Then, the simplicial structure of Sk(X ′) is given by
barycentrically subdividing σ in Sk(X ′).

To see this, let E be the exceptional divisor and D′1, D′2 the strict transforms of D1 and D2

respectively. Firstly, if redX (x) is the generic point of E, then it follows from lemma 4.2.8 that

(X , (D1, D2), z, (1/(N1 +N2), 1/(N1 +N2))
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is a monomial presentation for x. If redX (x) is, without loss of generality, the generic point of
D′1, then (X , D1) is a divisorial presentation for x.

Next, we consider a point x such that redX ′(x) =: ξ is the generic point of an intersection
E ∩ D′2, after possibly permuting the induces. Hence, let (X ′, (E,D2), ξ, α) be a monomial
presentation for x. In this case, it follows from lemma 4.2.8 that

(X , (D1, D2), z, (α1, α2 + α1))

is a monomial presentation for x.

Hence, we have shown that Sk(X ′) ⊂ Sk(X ), from which it follows that Sk(X ′) = Sk(X ).
Considering the simplicial structure, there is an extra vertex corresponding to the exceptional
divisor, which is located in the barycenter of the 1-simplex corresponding to the point z.

This is in fact a special case of the following more general theorem, which we present without
proof.

Proposition 4.2.12. [21, Prop. 3.1.9] Let D1, . . . , Dr be irreducible components of Xs, ξ the
generic point of a connected component of the intersection D1∩· · ·∩Dr and σ the face of Sk(X )

corresponding to ξ. If X ′ → X is the blow-up with center given by the closure of ξ, then
Sk(X ′) = Sk(X ), and the simplicial structure of Sk(X ′) is obtained by adding a vertex to the
barycenter of σ and joining it to the faces of σ.

Now let X be an snc model for a curve X, D an irreducible component of Xs and z a
closed point on D such that no other irreducible components pass through z. Let X ′ → X be
the blow-up centered at z. In this case, Sk(X ) is a strict subset of Sk(X ′). Consider a point
x ∈ Sk(X ′) such that the closure of redX ′(x) is contained in the exceptional divisor E. We have
that redX (x) = z, hence x is not monomial with respect to X . We can see that the simplicial
structure of Sk(X ′) is obtained by adjoining a line segment to a vertex of Sk(X ): more precisely,
the vertices of the line segment correspond to the divisorial points associated with E and D, while
the interior corresponds to the monomial points with presentation (X ′, (E,D), ξ, α), for some
α.

Finally, we note the following proposition due to Berkovich and Thuillier shows that for an
snc model X , Sk(X ) is a strong deformation retract of Xan.

Proposition 4.2.13. [29, Theorem 3.26] There exists a continuous map

H : X̂η × [0, 1]→ X̂η

such that H0(x) = H(x, 0) is the identity map, H1(x) = H(x, 1) is the retraction map ρX and
for all t ∈ [0, 1], H(x, t) = x for x ∈ Sk(X ).

Hence, for an snc model X , the homotopy type of Xan is the same as that of the dual complex
of Xs, which admits a simplicial structure and is hence easier to analyse. The proof of the prior
theorem requires machinery which is outside of the scope of this report; a construction of the
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deformation retraction in a concrete example may be found in [22, §2.5].

4.3 The Structure of k-Analytic Spaces
The primary goal of this section will be to prove theorem 4.3.7, which essentially states that an
analytic space Xan can be recovered by taking an inverse limit of skeleta. In order for this result
to hold, we assume that X satisfies the conditions of the ambient scheme W in our statement of
resolution of singularities (theorem 4.2.2).

A key result in proving this is the fact that for any two distinct points x and y in Xan, there
exists an snc model X such that ρX (x) 6= ρX (y). Before giving a proof of this theorem, we
illustrate the strategy using the example of the analytic projective line. To begin, X = P1

R is an
snc model for P1,an

k . The special fiber is simply the projective line over k̃ and the corresponding
skeleta consists of a single type II point, corresponding to the norm on k{T}. Consequently, we
see that every point retracts to the same point.

We split our analysis into two cases, depending on whether redX (x) and redX (y) are equal.
In the first case, let x be the point given by the seminorm |f(T )|x = |f(0)| for all f ∈ k[T ],
and y the point given by the seminorm |f(T )|x = |f(1)|. Both of these points lie in the closed
disk E(0, 1) =M (k{T}) ⊂ P1,an

k , so that the affine chart SpecR[T ] ⊂X contains redX (x) and
redX (y). Then, observe that H (x)◦◦ ∩ R[T ] is the ideal (π, T ): if f(T ) = π · g(T ) + T · h(T ),
then we may assume that g(T ) = c is a constant and compute:

|f(T )|x ≤ max{|π · c|x, |T · h(T )|x} < 1.

Conversely, if f(T ) = a0+· · ·+anTn is such that |f(T )|x < 1, then: |f(T )|x = |a0+· · ·+anTn|x =

|a0| < 1, hence it follows that a0 ∈ (π) and hence f(T ) ∈ (π, T ). Therefore, redX (x) is the
point of SpecR[T ] corresponding to the maximal ideal (π, T ). A similar argument shows that
redX (y) is the point corresponding to the maximal ideal (π, T −1), and hence we are in the case
redX (x) 6= redX (y). It follows from proposition 4.2.3 that performing a blow-up of X at either
of the reduction points will give rise to an snc model X ′; the claim is that ρX ′(x) 6= ρX ′(y).

Choosing the point given by (π, T ) as the center of the blow-up, we find that the resulting
scheme

X ′ = ProjR[T ][A,B]/(πB − TA)

admits a covering by affine charts UB = SpecR[T, a]/(π−Ta) and UA = SpecR[T, b]/(πb−T ) ∼=
SpecR[b]. These affine charts are glued along the isomorphism

SpecR[T, a, a−1]/(π − Ta) ∼= SpecR[T, b, b−1]/(πb− T )

induced by the ring homomorphism sending a 7→ b−1. Consequently, the special fiber is now
given by the charts ŨB = Spec k̃[T, a]/(Ta) and ŨA = Spec k̃[T, b]/(t) ∼= Spec k̃[b] with the
corresponding gluing. Geometrically, the blow-up has the effect of attaching a projective line
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to the origin of the affine line over k̃. In particular, redX ′(x) is now the point at infinity of
the projective line in the special fiber. Since the sets of irreducible components of the special
fiber passing through redX ′(x) and redX ′(y) are disjoint, it follows that the points ρX ′(x) and
ρX ′(y) are distinct.

We digress momentarily to analyse the generic fiber of X ′. The space X̂ ′
η is now formed by

gluingM (k{T, a}/(π − aT )) andM (k{T, b}/(πb− t) alongM
(
k{π−1T, πT−1}

)
. Observe that

the former affinoid space is an annulus with inner radius π and outer radius 1, while the latter is
isomorphic to the closed diskM (k{b}), which embeds intoM (k{T}) using the map b 7→ π−1T .
Hence, it is identified with the closed disk of radius π, and the space X̂ ′

η is isomorphic to the
closed unit disk M (k{T}).

Now we consider a case where the specializations redX (x) and redX (y) are equal. For this,
let x be as before, and let y be the point given by the norm on k{r−1T}, where r < 1. The
earlier argument which showed that redX (x) is the point of SpecR[T ] given by the ideal (π, T )
generalises to show that redX (y) is also the point (π, T ). Intuitively, we can think of this as a
consequence of the fact that both x and y lie in the open disk D(0, 1).

The goal now is to find a suitable center for a blow-up such that the reductions of the two
points are distinct, hence reducing to the previous case.

Note that the regular function f(T ) = T + π2 is such that |f |x = |π2| 6= |π| = |f |y. Consider
the subscheme Z of X defined by the ideal (π, T + π2) = (π, T ). Blowing-up gives the same
scheme computed above, but we note that both reduction points now lie in the chart UA. In
particular, the points define multiplicative seminorms on the ring R[T, b]/(πb − T ), and f/π =

b+π is a regular function on the chart UA. We find that |f/π|x = |b+π|x = |π|, while |b+π|y = 1,
so it follows that the reduction points are now distinct.

To generalise these arguments, we must consider which aspects of the example above resulted
in simplification which may in general be unreasonable to expect.

In the first case of our analysis, when the analytic space is not a curve, it may not be the
case that one of the reduction points is closed. In this case, we may try to take the closure of
one of the reduction points as a center for the blow-up, but this center may contain singularities,
so that the blow-up may not even be regular. Consequently, to produce the desired snc model,
we may invoke resolution of singularities. If Π : X ′ →X is as in the statement of the theorem,
then Π−1(Xs) ∼= X ′

s .

In the second case, we wish to more generally find a function f such that |f |x 6= |f |y and
either |f |x or |f |y is equal to |πk| for some k, so that we can then take the blow-up with center
defined by the ideal (πk, f) in some neighbourhood of the reduction point. Once again, the
closure of the subscheme defined by this ideal may not be regular, leading us to further invoke
resolution of singularities.

Equipped with these ideas, we formulate the following series of lemmas.
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Lemma 4.3.1. Let X be an snc model and x, y ∈ X̂η distinct points such that ρX (x) = ρX (y)

but redX (x) 6= redX (y). Then there exists a snc model X ′ →X such that ρX ′(x) 6= ρX ′(y)

Proof. We may assume firstly that redX (x) 6∈ {redX (y)}. Indeed, if we have both redX (x) ∈
{redX (y)} and redX (y) ∈ {redX (x)}, then it follows that {redX (x)} = {redX (y)} =: Z.
Hence, redX (x) = redX (y) is the generic point of the irreducible closed subset Z, which is a
contradiction.

Now denoting Z := {redX (y)}, we consider the blow-up X ′′ →X with center Z. In general,
the subscheme Z is not regular and hence X ′′ is not guaranteed to be an snc model. We now
perform a resolution of singularities of the pair (X ′′,X ′′

s ), resulting in a regular scheme X ′ →
X ′′. Since a blow-up is an isomorphism outside of its center, any singular points are contained
within X ′′

s . In particular, performing resolution of singularities induces an isomorphism of
generic fibers (X ′

s )
an ∼= (X ′′

s )an. Furthermore, the special fiber of X ′ is given by the total
transform of the special fiber of X ′′. Hence, we see that X ′ is an snc model.

Let Π : X ′ → X ′′ → X be the composition. We observe that redX ′(y) lies in Π−1(Z);
consequently, the set of irreducible components of X ′

s passing through redX ′(y) is distinct from
those passing through redX ′′(x), showing that ρX ′′(x) 6= ρX ′′(y).

Lemma 4.3.2. Let A be an R-algebra of finite type, X = SpecA and x, y ∈ X̂η distinct points.
Then, there exists a regular function f ∈ A such that |f |x 6= |f |y and either |f |x = |πn| or
|f |y = |πn| for some n.

Proof. If x and y are distinct points of X̂η ⊂ Xan
k , then there exists a regular function g ∈ A such

that |g|x 6= |g|y. Without loss of generality, assume that |g|x < |g|y ≤ 1 and that neither |g|x
nor |g|y are equal to |πn| for any n. Consider that if there exists n such that |g|x < |πn| < |g|y,
then |g + πn|x = |πn| < |g + πn|y = |g|y by the non-Archimedean triangle inequality, so that we
can set f = g+ πn to conclude. In general, denote |π| = p, |g|x = r, |g|y = s. Then it is a matter
of computing: there exists a rational a/b such that logp r > a/b > logp s, so logp r

b > a > logp s
b

and hence we find that rb < pa < sb. Therefore, letting g′ = gb, we reduce to the situation
above.

Lemma 4.3.3. Let X be an snc model and x, y ∈ X̂η distinct points such that redX (x) =

redX (y). Then there exists an snc model X ′ →X such that redX ′(x) 6= redX ′(y).

Proof. Let U = SpecA ⊂ X be an affine neighbourhood of redX (x) = redX (y); then, x and
y are points in Ûη. By lemma 4.3.2 we may assume that there exists some f ∈ A such that
|f |x 6= |f |y and |f |x = |πm| for some m. Assume that |f |x < |f |y; the other case is similar.
Consider the closed subscheme of U cut out by the ideal (f, πm) and let Z be its closure in X .
Let Π : X ′′ → X be the blow-up with center Z. We note that redX ′′(x) and redX ′′(y) are
both contained in Π−1(U). By considering the usual affine cover of the blow-up, we see that
redX ′′(x) and redX ′′(y) lie in a common affine chart where the function t = πm/f is regular.
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We now have that |t|x = |πm|/|f |x = 1 while |t|y = |πm|/|f |y < 1. Since the blow-up may be
computed locally, we find that X ′′ gives an R-model where the reduction points of x and y are
distinct. In general X ′ is not an snc model since Z may not be regular, but once again, resolving
singularities gives an snc model X ′ →X ′′, and we see that redX ′(x) 6= redX ′(x).

The following theorem is now immediately implied by the existence of an snc model for X
and lemmas 4.3.1 and 4.3.3.

Theorem 4.3.4. Let x, y ∈ Xan be distinct points. Then there exists an snc model X of X
such that ρX (x) 6= ρX (y).

It is worth exploring the situations where resolution of singularities, which is an involved and
intricate result, is not required. In the above proofs, resolution of singularities was invoked twice.
Proposition 4.2.3 showed that if the center of the blow-up is closed, then resolution of singularities
does not need to be invoked, and in the case of curves we find that if two points retract to the
same point of the skeleton but have different reductions, then one of the reduction points must
be closed. Indeed, if neither reduction point is closed, then they are both generic points of some
irreducible component of the special fiber of the model; since they retract to the same point on
the skeleton, it follows that both points are the generic point of the same irreducible component.
Hence, for a curve the first instance of resolution of singularities is unnecessary. We now claim
that the second invocation is also unnecessary in the case of curves.

Theorem 4.3.5. Let X be a curve, x and y distinct points of Xan and X an snc model of X
such that redX (x) = redX (y). Then there exists a finite sequence of blow-ups

X ′ = Xn → · · · →X0 = X

where each blow-up Xi+1 → Xi has a center given by a closed point and each Xi is an snc
model, such that ρX ′(x) 6= ρX ′(y).

Firstly, we show this in the case where one of the points has non-trivial kernel, in other words,
x ∈ X̂η is such that ι(x) is a closed point of X ∼= Xk. In this case, we may consider the closure
F = {ι(x)} in X . Recall that there exists a unique map φ : SpecH (x)◦ → X ′ extending the
morphism SpecH (x) → X ′, where the generic point of SpecH (x) is mapped to the generic
point of F , and the closed point of SpecH (x) is mapped to redX ′(p). The residue field at ι(x) is
a finite field extension of k, and it follows that its completion H (x) is also a finite field extension
of k. Consequently, the morphism SpecH (p)◦ → SpecR is finite. In particular, SpecH (p)◦ is a
proper R-scheme. It follows that the image of φ is the closed subscheme of X corresponding to
F , and in particular, the point redX (p) is the unique point contained in Xs ∩ SuppF . We note
that redX (x) is then a closed point in X , so taking the blow-up with center redX (x) results in
an snc model.

Lemma 4.3.6. Let X be a curve, x and y distinct points of Xan and X an snc model of X
such that redX (x) = redX (y). Assume that ι : Xan → X maps x to a closed point of X. Then
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there exists a finite sequence of blow-ups

X ′ = Xn → · · · →X0 = X

where each blow-up Xi+1 → Xi has center given by a closed point, each Xi is an snc model,
ρX ′(x) 6= ρX ′(y) and, additionally, redX ′(x) 6= redX ′(y).

Proof. It is notationally convenient to switch to additive notation using semivaluations instead of
seminorms. If Xi is an snc model as in the statement of the theorem, denote the corresponding
reduction map by redi and the corresponding retraction map by ρi.

Firstly, we note that since H (x) is a finite field extension of k, it follows that |k×| has finite
index in |H (x)×|, so that |H (x)×|/|k×| is a finite group. Denote by b(x) the order of this
group. In particular then, for any f ∈ OX ,redX (x) which is not a unit, vx(f) = a(f)/b(x) for
some integer a(f) ≥ 1.

Let f ∈ OX ,redX (x) be such that vx(f) 6= vy(f). Assume that we have constructed a sequence
of blow-ups Xi → · · · → X0 = X , for i ≥ 0, as in the statement of the theorem. If redi(x) 6=
redi(y), then we can conclude using lemma 4.3.1. So assume that redi(x) = redi(y) =: z, so that
z is a closed point of Xi. Let z1, z2 be an snc system of parameters at z, and let Xi+1 →Xi be
the blow-up with center z.

Case 1 If vy(z1) < vy(z2), then it follows that redi+1(x) 6= redi+1(y). Indeed, assume for a
contradiction that the reduction points are equal. Then, either z1/z2 or z2/z1 is regular on a
neighbourhood of redi+1(x); assuming that it is the former, we find that vx(z1/z2) < 0, which
gives a contradiction. We may now conclude by lemma 4.3.1.

Case 2 Assume that vy(z1) ≥ vy(z2), so that redi+1(x) = redi+1(y). Furthermore, suppose
that vx(z2) 6= vy(z2). Since ρi(x) = ρi(y), it follows from construction of the retraction map that
we must have vx(z1) = vy(z1). Then, z2, z1/z2 is a regular system of parameters at redi+1(x), but
we now note that vy(z2) 6= vx(z2) and vy(z1/z2) 6= vx(z1/z2), so it follows that ρi+1(x) 6= ρi+1(y).

If redi+1(x) = redi+1(y), then we note that since x has non-trivial kernel, it cannot be a point
on Sk(Xi+1). Hence, ρi+1(x) is a divisorial point by proposition 4.2.11, so that by taking finitely
many blow-ups, where each center is a closed point, we may find a model X ′ with respect to
which ρi+1(x) is divisorial. It then follows that redX ′(x) 6= redX ′(y).

Case 3 We may now assume that vx(z2) = vy(z2). Writing f = z1f1 + z2f2, we see that in
OXi+1,redi+1(x), f can be written in the following form:

f = z2 ·
z1
z2
f1 + z2f2 = z2

(
z1
z2
· f1 + f2

)
= z2f

′.

Then, vx(f ′) = vx(f)− vx(z2), and vx(z2) ≥ 1/b(x). Since vy(z2) = vx(z2), we see that vy(f ′) 6=
vx(f

′). Iterating this process, replacing Xi with Xi+1 and f with f ′, we see that this procedure
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terminates after finitely many steps. Then, redX ′′(x) 6= redX ′′(y), and we again conclude by
lemma 4.3.1.

For any f ∈ K(X)×, a point x ∈ Xan is called a zero of f if |f |x = 0. For any closed point p
of X, the residue field κ(p) is a finite field extension of k, and admits a unique non-Archimedean
absolute value extending the absolute value on k. There is hence a unique point x ∈ Xan where
ι(x) = p. Since X is a proper, integral scheme of dimension 1, we see that a rational function f

has finitely many zeros. This observation may now be used to generalise the prior lemma to any
set of points.

Proof of theorem 4.3.5. Fix an element f ∈ OX ,redX (x) such that vx(f) 6= vy(f). By lemma 4.3.6,
we may find a proper morphism h : X ′ → X such that the zeros of f reduce to distinct points
on X ′

s , and by applying lemma 4.3.6 again, we can further assume that redX ′(x) and redX ′(y)

are distinct from the reductions of the zeros of f .

Let D = divX ′(f) be the divisor of f on X ′. Since f is regular on a neighbourhood U

of redX (x), the intersection D ∩ h−1(U) is an effective divisor on h−1(U), and we may hence
assume that D is effective. There is a decomposition D = D̃ + E, where the prime components
of E are prime components which appear in the special fiber X ′

s . Let F be a prime component
of D̃. The generic point of F corresponds to a closed point of the generic fiber X ′

k and hence to
a zero p ∈ Xan of f , and by our earlier remarks, the only point contained in Supp(F ) ∩X ′

s is
then redX ′(p).

In particular, we find that redX ′(x) and redX ′(y) are not contained in Supp(D̃). Hence,
vx(f) = vx(D̃+E) = vx(E), where the first equality is by definition of the valuation of a divisor.
The second equality is due to the fact that we may choose a local equation g = 0 for D such that
g is a unit in OredX ′ (x), and hence

vx(D̃ + E) = vx(g · g′) = vx(g) + vx(g
′) = vx(g

′) = vx(E)

where g′ = 0 is a local equation for E.

Denoting z = ρX ′(x), we claim that vx(E) = vz(E). This follows from the fact that vx(F ) =
vz(F ) for any irreducible component of Xs passing through redX ′(x); the multiplicity with which
each such F appears in E then completely determines vx(E) and shows that vx(E) = vz(E). The
same argument then shows that the corresponding equation holds for y, so that ρX ′(x) 6= ρX ′(y)

since vx(E) 6= vy(E).

Proposition 4.2.10 shows that proper morphisms of snc models X ′ → X induce an inverse
system of skeleta, composed of the retraction maps ρX : Sk(X ′) → Sk(X ). The following
theorem then says that taking the limit over all skeleta recovers the space Xan, providing a
connection between the geometry of Xan and the birational geometry of X. This result is stated
without proof in [19, p. 77, Theorem 10], and a proof is given using significantly more advanced
and vastly different techniques in algebraic geometry in [11, Corollary 3.2]. We stress that the
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arguments we have presented in this chapter are not simplifications of those found in loc. cit.
and have been constructed independently. A proof is also provided in the algebraically closed
case for curves in [4, Theorem 5.2]. There are several results in the literature investigating
how an analytic space may be expressed as an inverse limit of simplicial complexes and similar
polyhedral topological spaces. A set of references to these results may be found in the discussion
preceding [11, Corollary 3.2].

Theorem 4.3.7. There is a homeomorphism

Xan ∼= lim←− Sk(X )

where X ranges over the snc models of X.

Proof. The continuous maps ρX : Xan → Sk(X ) are such that ρX ◦ ρX ′ = ρX , so that by the
universal property of the limit, there exists a unique map u : Xan → lim←− Sk(X ). Since X is
proper, Xan is compact. Furthermore, each skeleton Sk(X ) is compact and Hausdorff, so that
lim←− Sk(X ) is also compact and Hausdorff. As a result, it suffices to show that the map u is a
bijection. It follows by [12, §9.6, Cor. 2] that since each map ρX is surjective, the map u is also
surjective. Finally, injectivity is a direct consequence of theorem 4.3.4.

An application of this theorem may be found in [11]; we suppress further discussion as it falls
outside of the scope of this project.
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Chapter 5

Applications to Elliptic Curves

In this final chapter, we analyse the case of elliptic curves, consider the technique of uniformiza-
tion and contrast it to the approaches we have seen so far.

5.1 Non-Archimedean Uniformization
Assume k is algebraically closed. Let X be the R-curve given by the equation xyz+π(x3+y3+z3).
Then, X̂ is a formal model for Xan

k and can be used to give an explicit picture of the latter.

Firstly, the special fiber is given by the vanishing of the function xyz, where x, y, z are
considered as coordinates on P2

k̃
. Hence, the special fiber X̂s is a ‘cycle of projective lines.’

AlthoughXan
k may be explicitly determined without much difficulty in this case by gluing, we may

more immediately determine its geometry using theorem 3.2.9. Each irreducible component gives
a type II point contained in the semistable vertex set. The ordinary double points have formal
fiber given by an open annulus while the smooth, closed points of each affine line correspond to
an open ball. Note that the smooth closed points, and hence the open balls which retract to
each type II point in the semistable vertex set, are in bijection with the set P1,an

k̃
\{0,∞}. This

gives the semistable decomposition; the associated skeleton is a triangle. We obtain the explicit
picture shown in fig. 5.1.

Speaking more generally, the curve Xk defines an elliptic curve over k with multiplicative
reduction. When working over C, the uniformization theorem states that any elliptic curve
defined over C is analytically isomorphic to a quotient C/Λ by a lattice Λ [26, §VI.5]. To find an
analog when working over non-Archimedean fields, Tate observed that changing variables using
the map z 7→ exp (2πiz) gives an isomorphism C/Λ → C×/qZ, where q = exp (2πiζ). Although
Qp has no non-trivial discrete subgroups, the multiplicative group Q×p does, and this observation
spurred the development of rigid analytic spaces and p-adic uniformization theory.

In the Berkovich setting, we let E be an elliptic curve over k with multiplicative reduction, in
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5.2. SNC Models for Elliptic Curves

which case E is known as a Tate curve. Then, there exists some q ∈ k× with ζ = |q| < 1 such that
Ean is formed from the closed annulusM

(
k{t, ζt−1}

)
by gluing along the isomorphism of affinoid

domains M
(
k{ζ−1t, ζt−1}

) ∼=M (
k{t, t−1}

)
. The claim is that there exists an isomorphism of

k-analytic spaces
Ean ∼= Gan

m,k/q
Z.

If a ∈ k× is any element, then it induces an automorphism of P1
k by multiplication by

a. This extends to an automorphism γa of P1,an
k by mapping a point x ∈ P1,an

k \P1,an
k (k) to

the point a · x given by |f(t)|a·x = |f(a · t)|x, for any f(t) ∈ k[t] [24, §II1.3]. It is worth
determining more concretely the effect of this action. Denote ξ = |a| and for each n ∈ Z, denote
An =M

(
k{ξ−(n−1)t, ξnt−1}

)
for some n ∈ Z. Then a · x is such that |t|a·x = |a| · |t|x = ξ · |T |x,

which shows that a ∈ An+1. Since there is an inverse automorphism induced by multiplication
by a−1, it follows that γa defines a map An → An+1. In fact, this map is an isomorphism induced
by the isomorphism of k-affinoid algebras

k{ξ−nt, ξn+1t−1} → k{ξ−(n−1)t, ξnt−1}
∞∑

m=−∞
cmt

m 7→
∞∑

m=−∞
cma

mtm

We have that Gan
m,k =

⋃
An, so that γa restricts to an automorphism of Gan

m,k. Now, letting
a = q and Γ = qZ be the infinite cyclic subgroup of k× generated by q, we see that Γ has an
action on Gan

m,k. This action is properly discontinuous, since for each point we may take an
open neighbourhood U isomorphic to an open annulus S(q′), where |q′| < |q|, and it follows that
γqm(U) ∩ U is empty for any m 6= 0. It follows similarly to the complex analytic case that we
may form a k-analytic space Gan

m,k/q
Z, and our description of the action of q on Gan

m,k coupled
with the construction of Gan

m,k/q
Z then shows that Ean ∼= Gan

m,k/q
Z.

The theory of semistable vertex sets may be applied to the Tate curve. Let p =
√
q and

ξ = |p| = ζ1/2, and observe that Ean can equivalently be described by gluing the annuli
M
(
k{t, ξt−1}

)
and M

(
k{ξ−2t, ξt−1}

)
appropriately. The points with representatives ζ0,1 and

ζ0,ξ then form a semistable vertex set V , and the corresponding skeleton Σ(Ean, V ) is topologi-
cally a circle.

We also remark that the isomorphism Ean ∼= Gan
m,k/q

Z may be used to determine a skeleton
for Ean. Recall that there exists a closed subset of Gan

m,k which is homeomorphic to R>0 by the
map r 7→ ζ0,r, and such that Gan

m,k deformation retracts onto this subspace. Now, the action of
q on this subspace has the effect of identifying a point ζ0,r with ζ0,|q|·r, resulting in the same
skeleton as we obtained using the approach of semistable vertex sets.

5.2 SNC Models for Elliptic Curves
We may also consider how the theory of snc models may be used to determine the geometry of the
analytification of an elliptic curve E with multiplicative reduction when working over a discrete
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5.2. SNC Models for Elliptic Curves

Figure 5.1: A visualisation of the analytification of an elliptic curve with multiplicative reduction.
The skeleton, which is highlighted here, is a circle.

Figure 5.2: Diagram indicating how a sequence of point blow-ups of the special fiber affects the
skeleton. The top row depicts the special fibers of each model, with the next model obtained by
a blow-up with the center indicated by a circle. The bottom row depicts the dual complex.

valuation ring. In this case, E admits a proper regular model X over R and Tate’s algorithm
may then be used to compute the structure of the special fiber Xs [26, §IV.9, Theorem 8.2].
Informally, Xs consists of n rational curves, each appearing with multiplicity one, arranged in
the shape of an n-gon for some n ≥ 1. We assume that n ≥ 2; then, in such an arrangement,
each intersection is transversal, and in particular X is an snc model for E. The dual graph is
then also given by an n-gon, hence, it is homeomorphic to a circle once more. We may recover
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5.2. SNC Models for Elliptic Curves

the full picture of Ean by taking sequences of blow-ups and passing to the projective limit. This
procedure is depicted for n = 3 in fig. 5.2. In the general case, we obtain a picture similar to
fig. 5.1.

A benefit of working with snc models is that we may also investigate the topology of elliptic
curves other than those with multiplicative reduction. We remark that in the case where the
elliptic curve E has good reduction, Tate’s algorithm indicates that there exists a proper regular
model X where Xs consists of a single non-singular curve. In this case, the dual graph consists
of a point, indicating that the space Ean is contractible.
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Chapter 6

Conclusion

A primary objective of this report was to give an overview of the theory of k-analytic spaces and
explore methods to construct skeleta, which are a useful tool in analysing the geometry of such
spaces. We break down the evaluation of the contributions of the project by chapter.

We firstly gave an overview of k-analytic spaces. After reviewing the foundational theory, we
were able to draw an explicit picture, giving an alternative derivation of Berkovich’s classification
of points using an approach originally stated in [28, Exercise 2.3.3.5]. We additionally gave a
description of the partial ordering on the affine line; in particular, this involved extending the
description given in [3] to the case of type IV points, which was left as an exercise.

Next, we considered formal models for analytic spaces and the skeleta of curves over alge-
braically closed fields. After giving an overview of the theory of formal schemes, we proved
lemma 3.1.4, theorem 3.1.6, and corollary 3.1.7, which detail the relation between the generic
fiber of the formal completion and the analytification of the generic fiber. Following [4], we devel-
oped the theory of semistable vertex sets and sketched the correspondence with semistable formal
models of a curve. We illustrated this correspondence concretely by considering the projective
line.

Next, we gave a presentation of the construction of a skeleton for analytic spaces of arbitrary
dimension, using snc models. The main contribution of this section was providing a proof of
theorem 4.3.7. The key aspect in showing this result was to prove that for any two distinct
points x and y on the analytic space, there exists an snc model such that x and y retract to
distinct points on the associated skeleton. This was shown in theorem 4.3.4, which applied to
arbitrary dimension but required resolution of singularities. Hence, in the case of curves, we also
provided a more direct argument utilising only blow-ups with centers given by closed points.

Finally, we exemplified the theory by applying these techniques to the analytification of an
elliptic curve.

Berkovich spaces are used prominently in various areas of mathematics. One particularly
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exciting application is to mirror symmetry, which is a geometric duality with roots in string
theory. The SYZ conjecture is an attempt to provide mathematical foundations for mirror
symmetry, which is originally a physical phenomenon, and in [19], the theory of Berkovich spaces
is a central in finding a non-Archimedean analog for the conjecture. The notion of the skeleton is
then a vital component of the conjecture, and in particular, the conjecture is exemplified through
the Tate elliptic curve [23]. Due to time constraints, we were not able to provide an exposition
of this, but it is indubitable that a discussion of such applications would have provided strong
motivations for the theory.

Throughout the report, proofs were occasionally omitted when it was deemed that they
would not be beneficial in our goals of developing intuition and an understanding of the theory. In
certain cases, we endeavoured to replace the proofs with examples, as in the case of theorem 3.2.10
and proposition 4.2.12.

A possible extension to the work presented here would be to investigate the results in chapter 4
in the context where the base field is algebraically closed. One effect of the discretely valued
assumption was that it simplified certain aspects, such as by ensuring that the schemes we were
considering were locally Noetherian. In particular, the notion of an snc divisor is ill-defined
and we must instead work with semistable models. The construction of monomial and divisorial
points, as found in [21], was also presented in the discretely valued case and would first need
to be extended to the algebraically closed case. We must be careful to consider blow-ups with
centers given by finitely generated ideals; we conjecture that the proof of theorem 4.3.4 may be
extended without too much difficulty, but the analogue of theorem 4.3.5 may be more challenging
in this context.

Ethical Considerations The ethical concerns regarding this project are negligible, which is
highly theoretical in nature. One aspect which may be considered is that of the role of areas
of mathematics such as number theory in military applications, primarily as a result of its use
in cryptography. While algebraic geometry and the theory of Berkovich spaces has some uses
in the fields of algebraic number theory and arithmetic geometry, the contents of this project
are sufficiently detached from any potential applications in real world scenarios for this to be a
reasonable concern. Additionally, the project does not involve the collection and processing of
user data, and does not involve human or animal participants. The project has not encountered
legal or moral issues.
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